Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(11): e32073, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38873669

RESUMO

Atherosclerosis is a chronic inflammatory disease characterised by plaque accumulation in the arteries. Macrophages are immune cells that are crucial in the development of atherosclerosis. Macrophages can adopt different phenotypes, with the M1 phenotype promoting inflammation while the M2 phenotype counteracting it. This review focuses on the factors that drive the polarisation of M1 macrophages towards a pro-inflammatory phenotype during AS. Additionally, we explored metabolic reprogramming mechanisms and cytokines secretion by M1 macrophages. Hyperlipidaemia is widely recognised as a major risk factor for atherosclerosis. Modified lipoproteins released in the presence of hyperlipidaemia can trigger the release of cytokines and recruit circulating monocytes, which adhere to the damaged endothelium and differentiate into macrophages. Macrophages engulf lipids, leading to the formation of foam cells. As atherosclerosis progresses, foam cells become the necrotic core within the atherosclerotic plaques, destabilising them and triggering ischaemic disease. Furthermore, we discuss recent research focusing on targeting macrophages or inflammatory pathways for preventive or therapeutic purposes. These include statins, PCSK9 inhibitors, and promising nanotargeted drugs. These new developments hold the potential for the prevention and treatment of atherosclerosis and its related complications.

2.
J Nanobiotechnology ; 21(1): 188, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37303049

RESUMO

BACKGROUND: Ferroptosis, a unique form of non-apoptotic cell death, is dependent on iron and lipoperoxidation, and has been shown to be associated with the pathogenesis of inflammatory bowel disease (IBD). Human umbilical cord mesenchymal stem cell-derived exosomes (hucMSC-Ex) are involved in cell survival, immune conditioning, and damage repair. However, the relationship between hucMSC-Ex, IBD, and ferroptosis is unknown. This paper explores the role of hucMSC-Ex in the repair of IBD through the regulation of the ferroptosis signaling pathway. RESULTS: In this study, we used small RNA sequencing to find that miR-129-5p was highly expressed in hucMSC-Ex, and by predicting its targeting to ACSL4, we verified the effect of miR-129-5p on mice IBD in vitro and human colonic epithelial cells (HCoEpiC) in vivo. We found that miR-129-5p reduces ferroptosis in intestinal epithelial cells by targeting ACSL4 to repair IBD, which provides new strategies for the prevention and treatment of IBD. CONCLUSION: In conclusion, our results demonstrate that hucMSC-Ex relieves IBD by targeting ACSL4 with miR-129-5p to inhibit lipid peroxidation (LPO) and ferroptosis, reducing intestinal inflammation and repairing damages. Mechanism of hucMSC-Ex inhibiting ferroptosis in intestinal epithelial cells. System Xc- mediates the transport of extracellular cystine into the cell, which gets reduced to cysteine to participate in GSH-mediated metabolism. GPX4 strongly inhibits ferroptosis by helping scavenge reactive oxygen species. The depletion of GSH correlates with decreased GPX4, and the imbalance of the antioxidant system leads to the formation of toxic phospholipid hydroperoxide, which promotes the occurrence of ferroptosis with the participation of irons. HucMSC-Ex has the ability to relieve GSH and GPX4 depletion and repair the intracellular antioxidant system. Ferric ions enter the cytosol through DMT1 and participate in lipid peroxidation. HucMSC-Ex can reduce the expression of DMT1 and alleviate this process. HucMSC-Ex-derived miR-129-5p targets ACSL4 and reduces the expression of ACSL4, an enzyme that mediates the conversion of PUFAs into phospholipids in intestinal epithelial cells, and is a positive regulator of lipid peroxidation. ABBREVIATIONS: GSH, glutathione; GPX4, glutathione peroxidase 4; GSSG, oxidized glutathione; DMT1, divalent metal transporter 1; ACSL4, acyl-CoA synthetase long-chain family member 4; PUFAs, polyunsaturated fatty acids; ALOXs, lipoxygenases; CoA, coenzyme A; PL, phospholipid; PLOOH, hydroperoxides, LOH, phospholipid alcohols; LPO, lipid peroxidation.


Assuntos
Exossomos , Ferroptose , Doenças Inflamatórias Intestinais , Células-Tronco Mesenquimais , MicroRNAs , Humanos , Animais , Camundongos , Antioxidantes , Doenças Inflamatórias Intestinais/terapia , Glutationa , MicroRNAs/genética
3.
Gut Microbes ; 15(1): 2176118, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36794838

RESUMO

The gut microbiome serves as a signaling hub that integrates environmental inputs with genetic and immune signals to influence the host's metabolism and immunity. Gut bacteria are intricately connected with human health and disease state, with specific bacteria species driving the characteristic dysbiosis found in gastrointestinal conditions such as inflammatory bowel disease (IBD); thus, gut bacteria changes could be harnessed to improve IBD diagnosis, prognosis, and treatment. The advancement in next-generation sequencing techniques such as 16S rRNA and whole-genome shotgun sequencing has allowed the exploration of the complexity of the gut microbial ecosystem with high resolution. Current microbiome data is promising and appears to perform better in some studies than the currently used fecal inflammation biomarker, calprotectin, in predicting IBD from healthy controls and irritable bowel syndrome (IBS). This study reviews current data on the differential potential of gut bacteria within IBD cohorts, and between IBD and other gastrointestinal diseases.


Assuntos
Gastroenteropatias , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Humanos , Prognóstico , Ecossistema , RNA Ribossômico 16S , Microbioma Gastrointestinal/genética , Doenças Inflamatórias Intestinais/microbiologia , Bactérias/genética , Fezes/microbiologia , Disbiose/diagnóstico , Disbiose/microbiologia
4.
Gut Pathog ; 14(1): 26, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35729658

RESUMO

Inflammatory bowel disease (IBD), a chronic gut immune dysregulation and dysbiosis condition is rapidly increasing in global incidence. Regardless, there is a lack of ideal diagnostic markers, while conventional treatment provides scarce desired results, thus, the exploration for better options. Changes in the gut microbial composition and metabolites either lead to or are caused by the immune dysregulation that characterizes IBD. This study examined the fecal metagenomics and metabolomic changes in IBD patients. A total of 30 fecal samples were collected from 15 IBD patients and 15 healthy controls for 16S rDNA gene sequencing and UHPLC/Q-TOF-MS detection of metabolomics. Results showed that there was a severe perturbation of gut bacteria community composition, diversity, metabolites, and associated functions and metabolic pathways in IBD. This included a significantly decreased abundance of Bacteroidetes and Firmicutes, increased disease-associated phyla such as Proteobacteria and Actinobacteria, and increased Escherichia coli and Klebsiella pneumoniae in IBD. A total of 3146 metabolites were detected out of which 135 were differentially expressed between IBD and controls. Metabolites with high sensitivity and specificity in differentiating IBD from healthy individuals included 6,7,4'-trihydroxyisoflavone and thyroxine 4'-o-.beta.-d-glucuronide (AUC = 0.92), normorphine and salvinorin a (AUC = 0.90), and trichostachine (AUC = 0.91). Moreover, the IBD group had significantly affected pathways including primary bile acid biosynthesis, vitamin digestion and absorption, and carbohydrate metabolism. This study reveals that the combined evaluation of metabolites and fecal microbiome can be useful to discriminate between healthy subjects and IBD patients and consequently serve as therapeutic and diagnostic targets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...