Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(11)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38893387

RESUMO

The extraction of cannabinoids from the inflorescence and leaves of Cannabis sativa L. is gaining interest from researchers, in addition to addressing the under-utilization of the by-products in the stems and roots of the trees. The present study investigated the recovery of pectin from the left-over parts of hemp tress using an eco-friendly method with the aid of organic acids. Different cannabis cultivars-Chalotte's Angels (CHA) and Hang-Krarog (HKR)-were used as plant materials. The stems of both cannabis cultivars contained more pectin than the roots, and tartaric acid-aided extraction provided higher yields than from citric acid. Extracting the acid solution affected some characteristics, thereby differentiating the functional properties of the derived pectin. Extraction using tartaric acid provided pectin with a higher galacturonic acid content, whereas pectin with a higher methylation degree could be prepared using citric acid. The pectin samples extracted from the stems of CHA (P-CHA) and HKR (P-HKR) had low methoxyl pectin. P-CHA had better free radical scavenging capability, whereas P-HKR showed more potent reducibility. Considering the functional properties, P-CHA showed greater emulsion formability and foaming activity, whereas P-HKR possessed a better thickening effect. The present work suggests the feasible utilization of P-CHA and P-HKR as food additives with bioactivity.


Assuntos
Cannabis , Pectinas , Extratos Vegetais , Pectinas/química , Pectinas/isolamento & purificação , Cannabis/química , Extratos Vegetais/química , Ácido Cítrico/química , Folhas de Planta/química , Caules de Planta/química , Tartaratos/química , Raízes de Plantas/química , Ácidos Hexurônicos/química , Ácidos Hexurônicos/análise
2.
Foods ; 13(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38254485

RESUMO

Emulsion-based foods are widely consumed, and their characteristics involving colloidal and oxidative stabilities should be considered. The fabrication of the interfaces by selecting the emulsifier may improve stability and trigger lipolysis, thereby reducing energy uptake from the emulsified food. The present work aimed to develop Okara cellulose crystals (OCs) as a multifunction emulsifier to preserve the physical and chemical stability of a Pickering emulsion via surface modification with phenolic acids. The modification of OC was performed by grafting with the selected phenolics to produce OC-gallic acid (OC-G) and OC-tannic acid (OC-T) complexes. There was a higher phenolic loading efficiency when the OC reacted with gallic acid (ca. 70%) than with tannic acid (ca. 50%). This trend was concomitant with better antioxidant activity of the OC-G than OC-T. Surface modification based on grafting with phenolic acids improved capability of the OC to enhance both the colloidal and oxidative stability of the emulsion. In addition, the cellulosic materials had a retardation effect on the in vitro lipolysis compared to a protein-stabilized emulsion. Surface modification by grafting with phenolic acids successfully provided OC as an innovative emulsifier to promote physico-chemical stability and lower lipolysis of the emulsion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...