Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 3564, 2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-32107430

RESUMO

Composite materials have become widely used in engineering applications, in order to reduce the overall weight of structures while retaining their required strength. In this work, a composite material consisting of discontinuous glass fibers in a polypropylene matrix is studied at the microstructural level through coupled experiments and simulations, in order to uncover the mechanisms that cause damage to initiate in the microstructure under macroscopic tension. Specifically, we show how hydrostatic stresses in the matrix can be used as a metric to explain and predict the exact location of microvoid nucleation that occurs during damage initiation within the composite's microstructure. Furthermore, this work provides evidence that hydrostatic stresses in the matrix can lead to coupled microvoid nucleation and early fiber breakage, and that small fragments of fibers can play an important role in the process of microvoid nucleation. These results significantly improve our understanding of the mechanics that drive the initiation of damage in the complex microstructures of discontinuous fiber reinforced thermoplastics, while also allowing scientists and engineers to predict the microstructural damage behavior of these composites at sub-fiber resolution and with high accuracy.

2.
Appl Spectrosc ; 71(2): 258-266, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28181467

RESUMO

Composites modified with nanoparticles are of interest to many researchers due to the large surface-area-to-volume ratio of nano-scale fillers. One challenge with nanoscale materials that has received significant attention is the dispersion of nanoparticles in a matrix material. A random distribution of particles often ensures good material properties, especially as it relates to the thermal and mechanical performance of composites. Typical methods to quantify particle dispersion in a matrix material include optical, scanning electron, and transmission electron microscopy. These utilize images and a variety of analysis methods to describe particle dispersion. This work describes how photoluminescent spectroscopy can serve as an additional technique capable of quickly and comprehensively quantifying particle dispersion of photoluminescent particles in a hybrid composite. High resolution 2D photoluminescent maps were conducted on the front and back surfaces of a hybrid carbon fiber reinforced polymer containing varying contents of alumina nanoparticles. The photoluminescent maps were analyzed for the intensity of the alumina R1 fluorescence peak, and therefore yielded alumina particle dispersion based on changes in intensity from the embedded nanoparticles. A method for quantifying particle sedimentation is also proposed that compares the photoluminescent data of the front and back surfaces of each hybrid composite and assigns a single numerical value to the degree of sedimentation in each specimen. The methods described in this work have the potential to aid in the manufacturing processes of hybrid composites by providing on-site quality control options, capable of quickly and noninvasively providing feedback on nanoparticle dispersion and sedimentation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...