Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Allergy Asthma Rep ; 24(10): 559-569, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39145903

RESUMO

PURPOSE OF REVIEW: Childhood-onset systemic lupus erythematosus (cSLE) is a severe and potentially life-threatening chronic autoimmune disease. cSLE is more aggressive and has poorer outcomes than adult-onset disease. The global burden of cSLE is poorly understood, with most publications on cSLE originating from high-resourced settings. The reports from less resourced settings indicate high morbidity and mortality in these populations. RECENT FINDINGS: In this article, we review the disparities in global access to rheumatology care and research for patients with cSLE. We highlight recent cSLE advances from all regions of the globe. We describe current obstacles to cSLE clinical care and research in all settings. Finally, we propose a path forward for high quality, equitable and accessible care to individuals with cSLE everywhere. Individuals with cSLE are at risk for morbidity and death, yet patients worldwide face challenges to adequate access to care and research. Sustained, collaborative efforts are needed to create pathways to improve care and outcomes for these patients.


Assuntos
Idade de Início , Lúpus Eritematoso Sistêmico , Humanos , Lúpus Eritematoso Sistêmico/terapia , Criança , Acessibilidade aos Serviços de Saúde , Saúde Global
2.
Environ Sci Pollut Res Int ; 30(56): 118830-118854, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37922085

RESUMO

Using green synthesis methods to produce halophytic nanoparticles presents a promising and cost-effective approach for enhancing plant growth in saline environments, offering agricultural resilience as an alternative to traditional chemical methods. This study focuses on synthesizing zinc oxide (ZnO) nanoparticles derived from the halophyte Withania somnifera, showcasing their potential in ameliorating tomato growth under salinity stress. The biosynthesis of ZnO nanoparticles was initially optimized (i.e., salt concentration, the amount of plant extract, pH, and temperature) using a central composite design (CCD) of response surface methodology (RSM) together with UV-Vis spectroscopy, Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and dynamic light scattering (DLS) to comprehensively characterize the biosynthesized ZnO NPs. The central composite design (CCD) based response surface methodology (RSM) was used to optimize the biosynthesis of ZnO nanoparticles (NPs) by adjusting salt concentration, plant extract, pH, and temperature. The ZnO NPs were characterized using UV-Vis spectroscopy, Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and dynamic light scattering (DLS). FT-IR showed an absorption peak of ZnO between 400 and 600 cm-1, while SEM showed irregular shapes ranging between 1.3 and 6 nm. The data of EDX showed the presence of Zn (77.52%) and O (22.48%) levels, which exhibited the high purity synthesized ZnO under saline conditions. Introducing ZnO nanoparticles to tomato plants resulted in a remarkable 2.3-fold increase in shoot length in T23 (100 mg/L ZnO nanoparticles + 50 mM NaCl). There was an observable increase in foliage at T2 (20 mg L-1 ZnO) and T23 (100 mg L-1 ZnO-NPs + 50 mM NaCl). Tomato plants treated with T2 (20 mg L-1 ZnO) and T23 (100 mg L-1 ZnO-NPs + 50 mM NaCl) improved root elongation compared to the control plant group. Both fresh and dry leaf masses were significantly improved in T1 (10 mg L-1 ZnO) by 7.1-fold and T12 (10 mg L-1 ZnO-NPs + 100 mM NaCl) by 0.8-fold. The concentration of Zn was higher in T12 (10 mg L-1 ZnO NPs + 100 mM NaCl) among all treatments. Our findings prove that utilizing ZnO nanoparticles under saline conditions effectively promotes tomato plants' growth, thereby mitigating the negative impacts of salt stress.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Solanum lycopersicum , Óxido de Zinco , Óxido de Zinco/química , Antibacterianos/química , Plantas Tolerantes a Sal , Nanopartículas Metálicas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Cloreto de Sódio , Nanopartículas/química , Extratos Vegetais/química , Difração de Raios X , Testes de Sensibilidade Microbiana
3.
Plants (Basel) ; 11(5)2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35270161

RESUMO

Plant salinity resistance results from a combination of responses at the physiological, molecular, cellular, and metabolic levels. This article focuses on plant stress tolerance mechanisms for controlling ion homeostasis, stress signaling, hormone metabolism, anti-oxidative enzymes, and osmotic balance after nanoparticle applications. Nanoparticles are used as an emerging tool to stimulate specific biochemical reactions related to plant ecophysiological output because of their small size, increased surface area and absorption rate, efficient catalysis of reactions, and adequate reactive sites. Regulated ecophysiological control in saline environments could play a crucial role in plant growth promotion and survival of plants under suboptimal conditions. Plant biologists are seeking to develop a broad profile of genes and proteins that contribute to plant salt resistance. These plant metabolic profiles can be developed due to advancements in genomic, proteomic, metabolomic, and transcriptomic techniques. In order to quantify plant stress responses, transmembrane ion transport, sensors and receptors in signaling transduction, and metabolites involved in the energy supply require thorough study. In addition, more research is needed on the plant salinity stress response based on molecular interactions in response to nanoparticle treatment. The application of nanoparticles as an aspect of genetic engineering for the generation of salt-tolerant plants is a promising area of research. This review article addresses the use of nanoparticles in plant breeding and genetic engineering techniques to develop salt-tolerant crops.

4.
Environ Sci Pollut Res Int ; 28(43): 60383-60405, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34532807

RESUMO

Salinity is one of the major causes of abiotic stress that leads to a reduction in crop yield. One strategy to alleviate and improve crop yield is to use halophytes. These types of plants naturally produce bioactive secondary metabolites, proteins, carbohydrates, and biopolymers that are involved in specialized physiological adaptation mechanisms to alleviate soil salinity. These traits could be leveraged and, in turn, be the focus of future breeding programs aimed to improve salinity resistance in traditional crops. Recently, the field of nanotechnology has gained the attention of researchers involved in agricultural science and associated disciplines. However, information on salinity tolerance mechanisms of halophytes, based on nanoparticles in agricultural crop plants, is limited. Recently, the use of selected halophytic-based nanoparticles has shown to improve crop performance by enhancing the plants' ion flux, improving water efficiency, root hydraulic movement in the favor of plant photosynthesis, the production of proteins involved in oxidation-reduction reactions, reactive oxygen species (ROS) detoxification, and hormonal signaling pathways under stress. Therefore, the aim of this review is to highlight the application of halophytic nanoparticles in alleviating salt stress in plants by understanding the mechanisms of plant growth, water relation, ion flux, photosynthesis, and the antioxidant defense system. This review also addresses uncertainties, ecotoxicological concerns, and associated drawbacks of nanoparticles on the environment. Future research perspectives with respect to the sustainable usage of nanoparticles in saline agriculture have also been presented.


Assuntos
Nanopartículas , Plantas Tolerantes a Sal , Agricultura , Melhoramento Vegetal , Tolerância ao Sal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA