Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028937

RESUMO

Macrocyclization of acyclic compounds is a powerful strategy for improving inhibitor potency and selectivity. Here we have optimized 2-aminopyrimidine-based macrocycles to use these compounds as chemical tools for the ephrin kinase family. Starting with a promiscuous macrocyclic inhibitor, 6, we performed a structure-guided activity relationship and selectivity study using a panel of over 100 kinases. The crystal structure of EPHA2 in complex with the developed macrocycle 23 provided a basis for further optimization by specifically targeting the back pocket, resulting in compound 55, a potent inhibitor of EPHA2/A4 and GAK. Subsequent front-pocket derivatization resulted in an interesting in cellulo selectivity profile, favoring EPHA4 over the other ephrin receptor kinase family members. The dual EPHA2/A4 and GAK inhibitor 55 prevented dengue virus infection of Huh7 liver cells. However, further investigations are needed to determine whether this was a compound-specific effect or target-related.

2.
bioRxiv ; 2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38405908

RESUMO

Macrocyclization of acyclic compounds is a powerful strategy for improving inhibitor potency and selectivity. Here, we developed a 2-aminopyrimidine-based macrocyclic dual EPHA2/GAK kinase inhibitor as a chemical tool to study the role of these two kinases in viral entry and assembly. Starting with a promiscuous macrocyclic inhibitor, 6, we performed a structure-guided activity relationship and selectivity study using a panel of over 100 kinases. The crystal structure of EPHA2 in complex with the developed macrocycle 23 provided a basis for further optimization by specifically targeting the back pocket, resulting in compound 55 as a potent dual EPHA2/GAK inhibitor. Subsequent front-pocket derivatization resulted in an interesting in cellulo selectivity profile, favoring EPHA4 over the other ephrin receptor kinase family members. The dual EPHA2/GAK inhibitor 55 prevented dengue virus infection of Huh7 liver cells, mainly via its EPHA2 activity, and is therefore a promising candidate for further optimization of its activity against dengue virus.

3.
J Med Chem ; 67(5): 3813-3842, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38422480

RESUMO

Mammalian STE20-like (MST) kinases 1-4 play key roles in regulating the Hippo and autophagy pathways, and their dysregulation has been implicated in cancer development. In contrast to the well-studied MST1/2, the roles of MST3/4 are less clear, in part due to the lack of potent and selective inhibitors. Here, we re-evaluated literature compounds, and used structure-guided design to optimize the p21-activated kinase (PAK) inhibitor G-5555 (8) to selectively target MST3/4. These efforts resulted in the development of MR24 (24) and MR30 (27) with good kinome-wide selectivity and high cellular potency. The distinct cellular functions of closely related MST kinases can now be elucidated with subfamily-selective chemical tool compounds using a combination of the MST1/2 inhibitor PF-06447475 (2) and the two MST3/4 inhibitors developed. We found that MST3/4-selective inhibition caused a cell-cycle arrest in the G1 phase, whereas MST1/2 inhibition resulted in accumulation of cells in the G2/M phase.


Assuntos
Proteínas Serina-Treonina Quinases , Quinases Ativadas por p21 , Animais , Proteínas Serina-Treonina Quinases/metabolismo , Mamíferos/metabolismo
4.
J Med Chem ; 67(1): 674-690, 2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38126712

RESUMO

MST1, MST2, MST3, MST4, and YSK1 are conserved members of the mammalian sterile 20-like serine/threonine (MST) family that regulate cellular functions such as proliferation and migration. The MST3 isozyme plays a role in regulating cell growth and apoptosis, and its dysregulation has been linked to high-grade tumors. To date, there are no isoform-selective inhibitors that could be used for validating the role of MST3 in tumorigenesis. We designed a series of 3-aminopyrazole-based macrocycles based on the structure of a promiscuous inhibitor. By varying the moieties targeting the solvent-exposed region and optimizing the linker, macrocycle JA310 (21c) was synthesized. JA310 exhibited high cellular potency for MST3 (EC50 = 106 nM) and excellent kinome-wide selectivity. The crystal structure of the MST3-JA310 complex provided intriguing insights into the binding mode, which is associated with large-scale structural rearrangements. In summary, JA310 demonstrates the utility of macrocyclization for the design of highly selective inhibitors and presents the first chemical probe for MST3.


Assuntos
Apoptose , Proteínas Serina-Treonina Quinases , Animais , Proteínas Serina-Treonina Quinases/metabolismo , Fosforilação , Mamíferos/metabolismo
5.
EBioMedicine ; 95: 104732, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37506557

RESUMO

BACKGROUND: Biomarkers predicting the outcome of HIV-1 virus control in natural infection and after therapeutic interventions in HIV-1 cure trials remain poorly defined. The BCN02 trial (NCT02616874), combined a T-cell vaccine with romidepsin (RMD), a cancer-drug that was used to promote HIV-1 latency reversal and which has also been shown to have beneficial effects on neurofunction. We conducted longitudinal plasma proteomics analyses in trial participants to define biomarkers associated with virus control during monitored antiretroviral pause (MAP) and to identify novel therapeutic targets that can improve future cure strategies. METHODS: BCN02 was a phase I, open-label, single-arm clinical trial in early-treated, HIV infected individuals. Longitudinal plasma proteomes were analyzed in 11 BCN02 participants, including 8 participants that showed a rapid HIV-1 plasma rebound during a monitored antiretroviral pause (MAP-NC, 'non-controllers') and 3 that remained off ART with sustained plasma viremia <2000 copies/ml (MAP-C, 'controllers'). Inflammatory and neurological proteomes in plasma were evaluated and integration data analysis (viral and neurocognitive parameters) was performed. Validation studies were conducted in a cohort of untreated HIV-1+ individuals (n = 96) and in vitro viral replication assays using an anti-CD33 antibody were used for functional validation. FINDINGS: Inflammatory plasma proteomes in BCN02 participants showed marked longitudinal alterations. Strong proteome differences were also observed between MAP-C and MAP-NC, including in baseline timepoints. CD33/Siglec-3 was the unique plasma marker with the ability to discriminate between MAPC-C and MAP-NC at all study timepoints and showed positive correlations with viral parameters. Analyses in an untreated cohort of PLWH confirmed the positive correlation between viral parameters and CD33 plasma levels, as well as PBMC gene expression. Finally, adding an anti-CD33 antibody to in vitro virus cultures significantly reduced HIV-1 replication and proviral levels in T cells and macrophages. INTERPRETATION: This study indicates that CD33/Siglec-3 may serve as a predictor of HIV-1 control and as potential therapeutic tool to improve future cure strategies. FUNDING: Spanish Science and Innovation Ministry (SAF2017-89726-R and PID2020-119710RB-I00), NIH (P01-AI131568), European Commission (GA101057548) and a Grifols research agreement.


Assuntos
Biomarcadores , Infecções por HIV , HIV-1 , Carga Viral , Humanos , Linfócitos T CD4-Positivos , Infecções por HIV/sangue , Infecções por HIV/tratamento farmacológico , Infecções por HIV/genética , Infecções por HIV/imunologia , Soropositividade para HIV , HIV-1/genética , HIV-1/fisiologia , Leucócitos Mononucleares , Proteoma , Proteômica , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/sangue , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/genética , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia , Vacinação , Carga Viral/efeitos dos fármacos , Carga Viral/genética , Carga Viral/imunologia , Fármacos Anti-HIV , Biomarcadores/sangue , Biomarcadores/metabolismo
6.
ACS Med Chem Lett ; 14(6): 833-840, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37312836

RESUMO

Bone morphogenetic protein (BMP) signaling is mediated by transmembrane protein kinases that form heterotetramers consisting of type-I and type-II receptors. Upon BMP binding, the constitutively active type-II receptors activate specific type-I receptors by transphosphorylation, resulting in the phosphorylation of SMAD effector proteins. Drug discovery in the receptor tyrosine kinase-like (TKL) family has largely focused on type-I receptors, with few inhibitors that have been published targeting type-II receptors. BMPR2 is involved in several diseases, most notably pulmonary arterial hypertension, but also contributes to Alzheimer's disease and cancer. Here, we report that macrocyclization of the promiscuous inhibitor 1, based on a 3-amino-1H-pyrazole hinge binding moiety, led to a selective and potent BMPR2 inhibitor 8a.

7.
Eur J Med Chem ; 254: 115347, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37094449

RESUMO

Salt-inducible kinases 1-3 (SIK1-3) are key regulators of the LKB1-AMPK pathway and play an important role in cellular homeostasis. Dysregulation of any of the three isoforms has been associated with tumorigenesis in liver, breast, and ovarian cancers. We have recently developed the dual pan-SIK/group I p21-activated kinase (PAK) chemical probe MRIA9. However, inhibition of p21-activated kinases has been associated with cardiotoxicity in vivo, which complicates the use of MRIA9 as a tool compound. Here, we present a structure-based approach involving the back-pocket and gatekeeper residues, for narrowing the selectivity of pyrido[2,3-d]pyrimidin-7(8H)-one-based inhibitors towards SIK kinases, eliminating PAK activity. Optimization was guided by high-resolution crystal structure analysis and computational methods, resulting in a pan-SIK inhibitor, MR22, which no longer exhibited activity on STE group kinases and displayed excellent selectivity in a representative kinase panel. MR22-dependent SIK inhibition led to centrosome dissociation and subsequent cell-cycle arrest in ovarian cancer cells, as observed with MRIA9, conclusively linking these phenotypic effects to SIK inhibition. Taken together, MR22 represents a valuable tool compound for studying SIK kinase function in cells.


Assuntos
Proteínas Quinases Ativadas por AMP , Proteínas Serina-Treonina Quinases , Proteínas Quinases Ativadas por AMP/metabolismo , Fígado/metabolismo , Isoformas de Proteínas , Inibidores de Proteínas Quinases/farmacologia
8.
Int J Mol Sci ; 23(23)2022 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-36499165

RESUMO

The PCTAIRE subfamily belongs to the CDK (cyclin-dependent kinase) family and represents an understudied class of kinases of the dark kinome. They exhibit a highly conserved binding pocket and are activated by cyclin Y binding. CDK16 is targeted to the plasma membrane after binding to N-myristoylated cyclin Y and is highly expressed in post-mitotic tissues, such as the brain and testis. Dysregulation is associated with several diseases, including breast, prostate, and cervical cancer. Here, we used the N-(1H-pyrazol-3-yl)pyrimidin-4-amine moiety from the promiscuous inhibitor 1 to target CDK16, by varying different residues. Further optimization steps led to 43d, which exhibited high cellular potency for CDK16 (EC50 = 33 nM) and the other members of the PCTAIRE and PFTAIRE family with 20-120 nM and 50-180 nM, respectively. A DSF screen against a representative panel of approximately 100 kinases exhibited a selective inhibition over the other kinases. In a viability assessment, 43d decreased the cell count in a dose-dependent manner. A FUCCI cell cycle assay revealed a G2/M phase cell cycle arrest at all tested concentrations for 43d, caused by inhibition of CDK16.


Assuntos
Quinases Ciclina-Dependentes , Ciclinas , Masculino , Humanos , Ciclinas/metabolismo , Sequência de Aminoácidos , Quinases Ciclina-Dependentes/metabolismo , Ligação Proteica
9.
J Med Chem ; 65(23): 15679-15697, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36384036

RESUMO

Activating mutations in the epidermal growth factor receptor (EGFR) are frequent oncogenic drivers of non-small-cell lung cancer (NSCLC). The most frequent alterations in EGFR are short in-frame deletions in exon 19 (Del19) and the missense mutation L858R, which both lead to increased activity and sensitization of NSCLC to EGFR inhibition. The first approved EGFR inhibitors used for first-line treatment of NSCLC, gefitinib and erlotinib, are quinazoline-based. However, both inhibitors have several known off-targets, and they also potently inhibit wild-type (WT) EGFR, resulting in side effects. Here, we applied a macrocyclic strategy on a quinazoline-based scaffold as a proof-of-concept study with the goal of increasing kinome-wide selectivity of this privileged inhibitor scaffold. Kinome-wide screens and SAR studies yielded 3f, a potent inhibitor for the most common EGFR mutation (EGFR Del19: 119 nM) with selectivity against the WT receptor (EGFR: >10 µM) and the kinome.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Quinazolinas/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Estudo de Prova de Conceito , Receptores ErbB/genética
10.
J Med Chem ; 65(19): 13264-13287, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36136092

RESUMO

LIMKs are important regulators of actin and microtubule dynamics, and they play essential roles in many cellular processes. Deregulation of LIMKs has been linked to the development of diverse diseases, including cancers and cognitive disabilities, but well-characterized inhibitors known as chemical probes are still lacking. Here, we report the characterization of three highly selective LIMK1/2 inhibitors covering all canonical binding modes (type I/II/III) and the structure-based design of the type II/III inhibitors. Characterization of these chemical probes revealed a low nanomolar affinity for LIMK1/2, and all inhibitors 1 (LIMKi3; type I), 48 (TH470; type II), and 15 (TH257; type III) showed excellent selectivity in a comprehensive scanMAX kinase selectivity panel. Phosphoproteomics revealed remarkable differences between type I and type II inhibitors compared with the allosteric inhibitor 15. In phenotypic assays such as neurite outgrowth models of fragile X-chromosome, 15 showed promising activity, suggesting the potential application of allosteric LIMK inhibitors treating this orphan disease.


Assuntos
Actinas , Quinases Lim , Quinases Lim/genética , Quinases Lim/metabolismo , Sondas Moleculares
11.
J Med Chem ; 65(11): 7799-7817, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35608370

RESUMO

Serine/threonine kinase 17A (death-associated protein kinase-related apoptosis-inducing protein kinase 1─DRAK1) is a part of the death-associated protein kinase (DAPK) family and belongs to the so-called dark kinome. Thus, the current state of knowledge of the cellular function of DRAK1 and its involvement in pathophysiological processes is very limited. Recently, DRAK1 has been implicated in tumorigenesis of glioblastoma multiforme (GBM) and other cancers, but no selective inhibitors of DRAK1 are available yet. To this end, we optimized a pyrazolo[1,5-a]pyrimidine-based macrocyclic scaffold. Structure-guided optimization of this macrocyclic scaffold led to the development of CK156 (34), which displayed high in vitro potency (KD = 21 nM) and selectivity in kinomewide screens. Crystal structures demonstrated that CK156 (34) acts as a type I inhibitor. However, contrary to studies using genetic knockdown of DRAK1, we have seen the inhibition of cell growth of glioma cells in 2D and 3D culture only at low micromolar concentrations.


Assuntos
Proteínas Reguladoras de Apoptose , Proteínas Serina-Treonina Quinases , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular Tumoral , Proteínas Quinases Associadas com Morte Celular , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Serina
12.
J Med Chem ; 64(12): 8142-8160, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34086472

RESUMO

Salt-inducible kinases (SIKs) are key metabolic regulators. The imbalance in SIK function is associated with the development of diverse cancers, including breast, gastric, and ovarian cancers. Chemical tools to clarify the roles of SIK in different diseases are, however, sparse and are generally characterized by poor kinome-wide selectivity. Here, we have adapted the pyrido[2,3-d]pyrimidin-7-one-based p21-activated kinase (PAK) inhibitor G-5555 for the targeting of SIK, by exploiting differences in the back-pocket region of these kinases. Optimization was supported by high-resolution crystal structures of G-5555 bound to the known off-targets, MST3 and MST4, leading to a chemical probe, MRIA9, with dual SIK/PAK activity and excellent selectivity over other kinases. Furthermore, we show that MRIA9 sensitizes ovarian cancer cells to treatment with the mitotic agent paclitaxel, confirming earlier data from genetic knockdown studies and suggesting a combination therapy with SIK inhibitors and paclitaxel for the treatment of paclitaxel-resistant ovarian cancer.


Assuntos
Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Piridonas/farmacologia , Pirimidinas/farmacologia , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Desenho de Fármacos , Humanos , Simulação de Dinâmica Molecular , Estrutura Molecular , Paclitaxel/farmacologia , Ligação Proteica , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Piridinas/síntese química , Piridinas/metabolismo , Piridonas/síntese química , Piridonas/metabolismo , Pirimidinas/síntese química , Pirimidinas/metabolismo , Ratos Sprague-Dawley , Relação Estrutura-Atividade
13.
J Med Chem ; 64(12): 7991-8009, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34076436

RESUMO

Macrocycles are typically cyclic variants of inhibitors derived from uncyclized canonical molecules or from natural products. For medicinal chemistry, drug-like macrocycles have received increasing interest over the past few years, since it has been demonstrated that macrocyclization can favorably alter the biological and physiochemical properties as well as selectivity in comparison to the acyclic analogue. Recent drug approvals such as Lorlatinib, glecaprevir, or voxilaprevir underline the clinical relevance of drug-like macrocycles. However, the synthesis of drug-like macrocycles can be challenging, since the ring-closing reaction is generally challenging with yields depending on the size and geometry of the bridging linker. Nevertheless, macrocycles are one opportunity to expand the synthetic toolbox for medicinal chemistry to provide bioactive molecules. Therefore, we reviewed the past literature of drug-like macrocycles highlighting reactions that have been successfully used for the macrocyclization. We classified the cyclization reactions by their type, ring-size, yield, and macrocyclization efficiency index.


Assuntos
Compostos Macrocíclicos/síntese química , Inibidores de Proteínas Quinases/síntese química , Animais , Catálise , Linhagem Celular Tumoral , Ciclização , Humanos , Compostos Macrocíclicos/farmacologia , Paládio/química , Inibidores de Proteínas Quinases/farmacologia
14.
Materials (Basel) ; 14(4)2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33572321

RESUMO

Today, materials designed for bone regeneration are requested to be degradable and resorbable, bioactive, porous, and osteoconductive, as well as to be an active player in the bone-remodeling process. Multiphasic silica/collagen Xerogels were shown, earlier, to meet these requirements. The aim of the present study was to use these excellent material properties of silica/collagen Xerogels and to process them by additive manufacturing, in this case 3D plotting, to generate implants matching patient specific shapes of fractures or lesions. The concept is to have Xerogel granules as active major components embedded, to a large proportion, in a matrix that binds the granules in the scaffold. By using viscoelastic alginate as matrix, pastes of Xerogel granules were processed via 3D plotting. Moreover, alginate concentration was shown to be the key to a high content of irregularly shaped Xerogel granules embedded in a minimum of matrix phase. Both the alginate matrix and Xerogel granules were also shown to influence viscoelastic behavior of the paste, as well as the dimensionally stability of the scaffolds. In conclusion, 3D plotting of Xerogel granules was successfully established by using viscoelastic properties of alginate as matrix phase.

15.
Int J Mol Sci ; 22(3)2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33572748

RESUMO

The fusion process of mononuclear monocytes into multinuclear osteoclasts in vitro is an essential process for the study of osteoclastic resorption of biomaterials. Thereby biomaterials offer many influencing factors such as sample shape, material composition, and surface topography, which can have a decisive influence on the fusion and thus the entire investigation. For the specific investigation of resorption, it can therefore be advantageous to skip the fusion on samples and use mature, predifferentiated osteoclasts directly. However, most conventional detachment methods (cell scraper, accutase), lead to a poor survival rate of osteoclasts or to a loss of function of the cells after their reseeding. In the present study different conventional and novel methods of detachment in combination with different culture surfaces were investigated to obtain optimal osteoclast differentiation, yield, and vitality rates without loss of function. The innovative method-using thermoresponsive surfaces for cultivation and detachment-was found to be best suited. This is in particular due to its ability to maintain osteoclast activity, as proven by TRAP 5b-, CTSK-activity and resorption pits on dentin discs and decellularized osteoblast-derived matrix plates. In conclusion, it is shown, that osteoclasts can be predifferentiated on cell culture dishes and transferred to a reference biomaterial under preservation of osteoclastic resorption activity, providing biomaterial researchers with a novel tool for material characterization.


Assuntos
Materiais Biocompatíveis/química , Monócitos/citologia , Osteoclastos/citologia , Reabsorção Óssea , Adesão Celular , Técnicas de Cultura de Células , Diferenciação Celular , Sobrevivência Celular , Células Cultivadas , Humanos , Osteogênese
16.
Stem Cell Res Ther ; 12(1): 116, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33579348

RESUMO

BACKGROUND: Combination of mesenchymal stem cells (MSCs) and biomaterials is a rapidly growing approach in regenerative medicine particularly for chronic degenerative disorders including osteoarthritis and osteoporosis. The present study examined the effect of biomaterial scaffolds on equine adipose-derived MSC morphology, viability, adherence, migration, and osteogenic differentiation. METHODS: MSCs were cultivated in conjunction with collagen CultiSpher-S Microcarrier (MC), nanocomposite xerogels B30 and combined B30 with strontium (B30Str) biomaterials in osteogenic differentiation medium either under static or mechanical fluid shear stress (FSS) culture conditions. The data were generated by histological means, live cell imaging, cell viability, adherence and migration assays, semi-quantification of alkaline phosphatase (ALP) activity, and quantification of the osteogenic markers runt-related transcription factor 2 (Runx2) and alkaline phosphatase (ALP) expression. RESULTS: The data revealed that combined mechanical FSS with MC but not B30 enhanced MSC viability and promoted their migration. Combined osteogenic medium with MC, B30, and B30Str increased ALP activity compared to cultivation in basal medium. Osteogenic induction with MC, B30, and B30Str resulted in diffused matrix mineralization. The combined osteogenic induction with biomaterials under mechanical FSS increased Runx2 protein expression either in comparison to those cells cultivated in BM or those cells induced under static culture. Runx2 and ALP expression was upregulated following combined osteogenic differentiation together with B30 and B30Str regardless of static or FSS culture. CONCLUSIONS: Taken together, the data revealed that FSS in conjunction with biomaterials promoted osteogenic differentiation of MSCs. This combination may be considered as a marked improvement for clinical applications to cure bone defects.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Fosfatase Alcalina/genética , Animais , Materiais Biocompatíveis , Diferenciação Celular , Células Cultivadas , Cavalos , Estresse Mecânico
17.
J Biomed Mater Res A ; 109(5): 722-732, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32654374

RESUMO

Aiming at the generation of a high strontium-containing degradable bone substitute, the exchange of calcium with strontium in gelatin-modified brushite was investigated. The ion substitution showed two mineral groups, the high-calcium containing minerals with a maximum measured molar Ca/Sr ratio of 80%/20% (mass ratio 63%/37%) and the high-strontium containing ones with a maximum measured molar Ca/Sr ratio of 21%/79% (mass ratio 10%/90%). In contrast to the high-strontium mineral phases, a high mass loss was observed for the calcium-based minerals during incubation in cell culture medium (alpha-MEM), but also an increase in strength owing to dissolution and re-precipitation. This resulted for the former in a decrease of cation concentration (Ca + Sr) in the medium, while the pH value decreased and the phosphate ion concentration rose significantly. The latter group of materials, the high-strontium containing ones, showed only a moderate change in mass and a decrease in strength, but the Ca + Sr concentration remained permanently above the initial calcium concentration in the medium. This might be advantageous for a future planned application by supporting bone regeneration on the cellular level.


Assuntos
Implantes Absorvíveis , Substitutos Ósseos/química , Fosfatos de Cálcio/química , Estrôncio/química , Substitutos Ósseos/efeitos da radiação , Precipitação Química , Força Compressiva , Meios de Cultura , Relação Dose-Resposta a Droga , Liberação Controlada de Fármacos , Raios gama , Gelatina/farmacologia , Concentração de Íons de Hidrogênio , Teste de Materiais , Microscopia Eletrônica de Varredura , Porosidade , Espectroscopia de Infravermelho com Transformada de Fourier , Esterilização , Estresse Mecânico , Resistência à Tração , Difração de Raios X
18.
Molecules ; 25(21)2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33153127

RESUMO

The development and characterization of biomaterials for bone replacement in case of large defects in preconditioned bone (e.g., osteoporosis) require close cooperation of various disciplines. Of particular interest are effects observed in vitro at the cellular level and their in vivo representation in animal experiments. In the present case, the material-based alteration of the ratio of osteoblasts to osteoclasts in vitro in the context of their co-cultivation was examined and showed equivalence to the material-based stimulation of bone regeneration in a bone defect of osteoporotic rats. Gelatin-modified calcium/strontium phosphates with a Ca:Sr ratio in their precipitation solutions of 5:5 and 3:7 caused a pro-osteogenic reaction on both levels in vitro and in vivo. Stimulation of osteoblasts and inhibition of osteoclast activity were proven during culture on materials with higher strontium content. The same material caused a decrease in osteoclast activity in vitro. In vivo, a positive effect of the material with increased strontium content was observed by immunohistochemistry, e.g., by significantly increased bone volume to tissue volume ratio, increased bone morphogenetic protein-2 (BMP2) expression, and significantly reduced receptor activator of nuclear factor kappa-B ligand (RANKL)/osteoprotegerin (OPG) ratio. In addition, material degradation and bone regeneration were examined after 6 weeks using stage scans with ToF-SIMS and µ-CT imaging. The remaining material in the defects and strontium signals, which originate from areas exceeding the defect area, indicate the incorporation of strontium ions into the surrounding mineralized tissue. Thus, the material inherent properties (release of biologically active ions, solubility and degradability, mechanical strength) directly influenced the cellular reaction in vitro and also bone regeneration in vivo. Based on this, in the future, materials might be synthesized and specifically adapted to patient-specific needs and their bone status.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Fosfatos de Cálcio , Fêmur , Gelatina , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteoporose/terapia , Fosfatos , Estrôncio , Animais , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Técnicas de Cocultura , Feminino , Fêmur/lesões , Fêmur/metabolismo , Fêmur/patologia , Gelatina/química , Gelatina/farmacologia , Osteoblastos/patologia , Osteoclastos/patologia , Osteoporose/metabolismo , Osteoporose/patologia , Fosfatos/química , Fosfatos/farmacologia , Ratos , Ratos Sprague-Dawley , Estrôncio/química , Estrôncio/farmacologia
19.
Molecules ; 25(19)2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33036488

RESUMO

The ongoing research on biomaterials that support bone regeneration led to the quest for materials or material modifications that can actively influence the activity or balance of bone tissue cells. The bone biocompatibility of porous chitosan scaffolds was modified in the present study by the addition of calcium phosphates or hemocyanin. The first strategy comprised the incorporation of calcium phosphates into chitosan to create a biomimetic chitosan-mineral phase composite. The second strategy comprised dip-coating of chitosan scaffolds with hemocyanin extracted from crayfish hemolymph. The cytocompatibility was assessed in a mono-culture of human bone marrow stromal cells (hBMSCs) and their differentiation to osteoblasts; in a mono-culture of human monocytes (hMs) and their maturation to osteoclasts; and in a co-culture of hBMSC/osteoblasts-hM/osteoclasts. Mineral incorporation caused an increase in scaffold bioactivity, as shown by reduced calcium concentration in the cell culture medium, delayed differentiation of hBMSCs, and reduced osteoclastic maturation of hMs in mono-culture. Dip-coating with hemocyanin led to increased proliferation of hBMSCs and equivalent osteoclast maturation in mono-culture, while in co-culture, both an inhibitory effect of mineral incorporation on osteoblastogenesis and stimulatory effects of hemocyanin were observed. It was concluded that highly bioactive scaffolds (containing mineral phases) restrain osteoblast and osteoclast development, while hemocyanin coating significantly supports osteoblastogenesis. These influences on the osteoblasts/osteoclasts activity ratio may support scaffold-driven bone healing in the future.


Assuntos
Fosfatos de Cálcio/química , Quitosana/química , Técnicas de Cocultura/métodos , Hemocianinas/química , Hemocianinas/farmacologia , Osteoblastos/citologia , Osteoclastos/citologia , Células Cultivadas , Durapatita/química , Humanos , Osteoblastos/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos
20.
Eur J Med Chem ; 208: 112770, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32883634

RESUMO

Casein kinase 2 (CK2) is a constitutively expressed serine/threonine kinase that has a large diversity of cellular substrates. Thus, CK2 has been associated with a plethora of regulatory functions and dysregulation of CK2 has been linked to disease development in particular to cancer. The broad implications in disease pathology makes CK2 an attractive target. To date, the most advanced CK2 inhibitor is silmitasertib, which has been investigated in clinical trials for treatment of various cancers, albeit several off-targets for silmitasertib have been described. To ascertain the role of CK2 inhibition in cancer, other disease and normal physiology the development of a selective CK2 inhibitor would be highly desirable. In this study we explored the pyrazolo [1,5-a]pyrimidine hinge-binding moiety for the development of selective CK2 inhibitors. Optimization of this scaffold, which included macrocyclization, led to IC20 (31) a compound that displayed high in vitro potency for CK2 (KD = 12 nM) and exclusive selectivity for CK2. X-ray analysis revealed a canonical type-I binding mode for IC20 (31). However, the polar carboxylic acid moiety that is shared by many CK2 inhibitors including silmitasertib was required for potency but limits the cellular activity of IC20 (31) and the cellular IC50 dropped to the low micromolar range. In summary, IC20 (31) represents a highly selective and potent inhibitor of CK2, which can be used as a tool compound to study CK2 biology and potential new applications for the treatment of diseases.


Assuntos
Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Sítios de Ligação , Caseína Quinase II/antagonistas & inibidores , Caseína Quinase II/química , Caseína Quinase II/metabolismo , Cristalografia por Raios X , Células HEK293 , Humanos , Estrutura Molecular , Ligação Proteica , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/metabolismo , Pirazóis/síntese química , Pirazóis/metabolismo , Pirimidinas/síntese química , Pirimidinas/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...