Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 43(30): 5559-5573, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37419689

RESUMO

Widespread release of norepinephrine (NE) throughout the forebrain fosters learning and memory via adrenergic receptor (AR) signaling, but the molecular mechanisms are largely unknown. The ß2 AR and its downstream effectors, the trimeric stimulatory Gs-protein, adenylyl cyclase (AC), and the cAMP-dependent protein kinase A (PKA), form a unique signaling complex with the L-type Ca2+ channel (LTCC) CaV1.2. Phosphorylation of CaV1.2 by PKA on Ser1928 is required for the upregulation of Ca2+ influx on ß2 AR stimulation and long-term potentiation induced by prolonged theta-tetanus (PTT-LTP) but not LTP induced by two 1-s-long 100-Hz tetani. However, the function of Ser1928 phosphorylation in vivo is unknown. Here, we show that S1928A knock-in (KI) mice of both sexes, which lack PTT-LTP, express deficiencies during initial consolidation of spatial memory. Especially striking is the effect of this mutation on cognitive flexibility as tested by reversal learning. Mechanistically, long-term depression (LTD) has been implicated in reversal learning. It is abrogated in male and female S1928A knock-in mice and by ß2 AR antagonists and peptides that displace ß2 AR from CaV1.2. This work identifies CaV1.2 as a critical molecular locus that regulates synaptic plasticity, spatial memory and its reversal, and LTD.SIGNIFICANCE STATEMENT We show that phosphorylation of the Ca2+ channel CaV1.2 on Ser1928 is important for consolidation of spatial memory and especially its reversal, and long-term depression (LTD). Identification of Ser1928 as critical for LTD and reversal learning supports the model that LTD underlies flexibility of reference memory.


Assuntos
Plasticidade Neuronal , Memória Espacial , Camundongos , Masculino , Feminino , Animais , Plasticidade Neuronal/fisiologia , Potenciação de Longa Duração/fisiologia , Transdução de Sinais , Fosforilação , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Hipocampo/fisiologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-37295646

RESUMO

BACKGROUND: Dysfunctional cognitive control processes are now well understood to be core features of schizophrenia (SZ). A body of work suggests that the dorsolateral prefrontal cortex (DLPFC) plays a critical role in explaining cognitive control disruptions in SZ. Here, we examined relationships between DLPFC activation and drift rate (DR), a model-based performance measure that combines reaction time and accuracy, in people with SZ and healthy control (HC) participants. METHODS: One hundred fifty-one people with recent-onset SZ spectrum disorders and 118 HC participants performed the AX-Continuous Performance Task during functional magnetic resonance imaging scanning. Proactive cognitive control-associated activation was extracted from left and right DLPFC regions of interest. Individual behavior was fit using a drift diffusion model, allowing DR to vary between task conditions. RESULTS: Behaviorally, people with SZ showed significantly lower DRs than HC participants, particularly during high proactive control trial types ("B" trials). Recapitulating previous findings, the SZ group also demonstrated reduced cognitive control-associated DLPFC activation compared with HC participants. Furthermore, significant group differences were also observed in the relationship between left and right DLPFC activation with DR, such that positive relationships between DR and activation were found in HC participants but not in people with SZ. CONCLUSIONS: These results suggest that DLPFC activation is less associated with cognitive control-related behavioral performance enhancements in SZ. Potential mechanisms and implications are discussed.


Assuntos
Esquizofrenia , Humanos , Córtex Pré-Frontal Dorsolateral , Córtex Pré-Frontal , Análise e Desempenho de Tarefas , Cognição
3.
Schizophr Bull ; 49(3): 717-725, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-36912046

RESUMO

BACKGROUND AND HYPOTHESIS: The neuronal mechanisms that underlie deficits in effort cost computation in schizophrenia (SZ) are poorly understood. Given the role of frontostriatal circuits in valence-oriented motivation, we hypothesized that these circuits are either dysfunctional in SZ or do not appropriately predict behavior in SZ when task conditions are difficult and good performance is rewarded. STUDY DESIGN: A total of 52 people with recent onset SZ-spectrum disorders and 48 healthy controls (HCs) performed a 3T fMRI task with 2 valence conditions (rewarded vs neutral) and 2 difficulty conditions. Frontostriatal connectivity was extracted during the cue (anticipatory) phase. Individual behavior was fit using a drift-diffusion model, allowing the performance parameter, drift rate (DR), to vary between task conditions. Three models were examined: A group × condition model of DR, a group × condition model of connectivity, and a regression model of connectivity predicting DR depending on group and condition. STUDY RESULTS: DRs showed the expected positive correlation with accuracy and a negative association with reaction time. The SZ group showed a deficit in DR but did not differ in overall connectivity or show a valence-specific deficit in connectivity. Significant group × valence × difficulty interactions, however, were observed on the relationship between right dorsolateral prefrontal (DLPFC)-striatal connectivity and DR (DLPFC-Caudate: F = 10.92, PFDR = .004; DLPFC-Putamen: F = 5.14, PFDR = .048) driven by more positive relationships between DR and connectivity during cues for the difficult-rewarded condition in HCs compared to SZ. CONCLUSIONS: These findings suggest that frontostriatal connectivity is less predictive of performance in SZ when task difficulty is increased and a reward incentive is applied.


Assuntos
Esquizofrenia , Humanos , Corpo Estriado/diagnóstico por imagem , Putamen , Imageamento por Ressonância Magnética , Recompensa , Vias Neurais/diagnóstico por imagem , Córtex Pré-Frontal/diagnóstico por imagem
4.
Psychol Sci ; 33(1): 105-120, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34878949

RESUMO

When searching for a target object, we engage in a continuous "look-identify" cycle in which we use known features of the target to guide attention toward potential targets and then to decide whether the selected object is indeed the target. Target information in memory (the target template or attentional template) is typically characterized as having a single, fixed source. However, debate has recently emerged over whether flexibility in the target template is relational or optimal. On the basis of evidence from two experiments using college students (Ns = 30 and 70, respectively), we propose that initial guidance of attention uses a coarse relational code, but subsequent decisions use an optimal code. Our results offer a novel perspective that the precision of template information differs when guiding sensory selection and when making identity decisions during visual search.


Assuntos
Memória de Curto Prazo , Percepção Visual , Atenção , Tomada de Decisões , Humanos , Reconhecimento Visual de Modelos , Tempo de Reação
5.
Molecules ; 26(16)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34443571

RESUMO

Through variations in reaction solvent and stoichiometry, a series of S-diiodine adducts of 1,3- and 1,4-dithiane were isolated by direct reaction of the dithianes with molecular diiodine in solution. In the case of 1,3-dithiane, variations in reaction solvent yielded both the equatorial and the axial isomers of S-diiodo-1,3-dithiane, and their solution thermodynamics were further studied via DFT. Additionally, S,S'-bis(diiodo)-1,3-dithiane was also isolated. The 1:1 cocrystal, (1,4-dithiane)·(I2) was further isolated, as well as a new polymorph of S,S'-bis(diiodo)-1,4-dithiane. Each structure showed significant S···I halogen and chalcogen bonding interactions. Further, the product of the diiodine-promoted oxidative addition of acetone to 1,4-dithiane, as well as two new cocrystals of 1,4-dithiane-1,4-dioxide involving hydronium, bromide, and tribromide ions, was isolated.

6.
Sci Rep ; 11(1): 13098, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34162943

RESUMO

In order to behave appropriately in a rapidly changing world, individuals must be able to detect when changes occur in that environment. However, at any given moment, there are a multitude of potential changes of behavioral significance that could occur. Here we investigate how knowledge about the space of possible changes affects human change point detection. We used a stochastic auditory change point detection task that allowed model-free and model-based characterization of the decision process people employ. We found that subjects can simultaneously apply distinct timescales of evidence evaluation to the same stream of evidence when there are multiple types of changes possible. Informative cues that specified the nature of the change led to improved accuracy for change point detection through mechanisms involving both the timescales of evidence evaluation and adjustments of decision bounds. These results establish three important capacities of information processing for decision making that any proposed neural mechanism of evidence evaluation must be able to support: the ability to simultaneously employ multiple timescales of evidence evaluation, the ability to rapidly adjust those timescales, and the ability to modify the amount of information required to make a decision in the context of flexible timescales.

7.
Talanta ; 221: 121482, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33076093

RESUMO

Membrane filters were coated with 10,12-pentacosadiynoic acid (PCDA) then polymerized on the filter for rapid bacterial detection and quantification. The polymerized PCDA (pPDCA)-coated filter changed color in response to Salmonella Typhimurium and Escherichia coli but not to Listeria innocua. The time required for color change of pPCDA-coated filters was determined by a visual panel. A simple linear regression model was generated to fit the observed data and was validated with goodness of fit analysis and residual analysis. The pPCDA-filter method estimated Salmonella Typhimurium populations of 8 to 3 log CFU ml-1 within 1.5-7.5 h, respectively.


Assuntos
Listeria , Contagem de Colônia Microbiana , Microbiologia de Alimentos , Polímero Poliacetilênico
8.
Front Neurosci ; 14: 826, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32903672

RESUMO

Decision making often involves choosing actions based on relevant evidence. This can benefit from focussing evidence evaluation on the timescale of greatest relevance based on the situation. Here, we use an auditory change detection task to determine how people adjust their timescale of evidence evaluation depending on task demands for detecting changes in their environment and assessing their internal confidence in those decisions. We confirm previous results that people adopt shorter timescales of evidence evaluation for detecting changes in contexts with shorter signal durations, while bolstering those results with model-free analyses not previously used and extending the results to the auditory domain. We also extend these results to show that in contexts with shorter signal durations, people also adopt correspondingly shorter timescales of evidence evaluation for assessing confidence in their decision about detecting a change. These results provide important insights into adaptability and flexible control of evidence evaluation for decision making.

9.
Gels ; 6(2)2020 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-32325773

RESUMO

Hydrogels composed of calcium cross-linked alginate are under investigation as bioinks for tissue engineering scaffolds due to their variable viscoelasticity, biocompatibility, and erodibility. Here, pyrrole was oxidatively polymerized in the presence of sodium alginate solutions to form ionomeric composites of various compositions. The IR spectroscopy shows that mild base is required to prevent the oxidant from attacking the alginate during the polymerization reaction. The resulting composites were isolated as dried thin films or cross-linked hydrogels and aerogels. The products were characterized by elemental analysis to determine polypyrrole incorporation, electrical conductivity measurements, and by SEM to determine changes in morphology or large-scale phase separation. Polypyrrole incorporation of up to twice the alginate (monomer versus monomer) provided materials amenable to 3D extrusion printing. The PC12 neuronal cells adhered and proliferated on the composites, demonstrating their biocompatibility and potential for tissue engineering applications.

10.
Curr Biol ; 29(12): 2091-2097.e4, 2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-31178325

RESUMO

To understand the neural mechanisms that support decision making, it is critical to characterize the timescale of evidence evaluation. Recent work has shown that subjects can adaptively adjust the timescale of evidence evaluation across blocks of trials depending on context [1]. However, it's currently unknown if adjustments to evidence evaluation occur online during deliberations based on a single stream of evidence. To examine this question, we employed a change-detection task in which subjects report their level of confidence in judging whether there has been a change in a stochastic auditory stimulus. Using a combination of psychophysical reverse correlation analyses and single-trial behavioral modeling, we compared the time period over which sensory information has leverage on detection report choices versus confidence. We demonstrate that the length of this period differs on separate sets of trials based on what's being reported. Surprisingly, confidence judgments on trials with no detection report are influenced by evidence occurring earlier than the time period of influence for detection reports. Our findings call into question models of decision formation involving static parameters that yield a singular timescale of evidence evaluation and instead suggest that the brain represents and utilizes multiple timescales of evidence evaluation during deliberation.


Assuntos
Tomada de Decisões , Julgamento , Adulto , Feminino , Humanos , Masculino , Psicofísica , Fatores de Tempo , Adulto Jovem
11.
Elife ; 72018 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-30141773

RESUMO

A broad range of decision-making processes involve gradual accumulation of evidence over time, but the neural circuits responsible for this computation are not yet established. Recent data indicate that cortical regions that are prominently associated with accumulating evidence, such as the posterior parietal cortex and the frontal orienting fields, may not be directly involved in this computation. Which, then, are the regions involved? Regions that are directly involved in evidence accumulation should directly influence the accumulation-based decision-making behavior, have a graded neural encoding of accumulated evidence and contribute throughout the accumulation process. Here, we investigated the role of the anterior dorsal striatum (ADS) in a rodent auditory evidence accumulation task using a combination of behavioral, pharmacological, optogenetic, electrophysiological and computational approaches. We find that the ADS is the first brain region known to satisfy the three criteria. Thus, the ADS may be the first identified node in the network responsible for evidence accumulation.


Assuntos
Neostriado/fisiologia , Análise e Desempenho de Tarefas , Potenciais de Ação/fisiologia , Animais , Comportamento Animal , Modelos Neurológicos , Neurônios/fisiologia , Optogenética , Ratos , Sensação
12.
J Neurophysiol ; 118(5): 2526-2536, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28794191

RESUMO

A critical component of decision making is determining when to commit to a choice. This involves stopping rules that specify the requirements for decision commitment. Flexibility of decision stopping rules provides an important means of control over decision-making processes. In many situations, these stopping rules establish a balance between premature decisions and late decisions. In this study we use a novel change detection paradigm to examine how subjects control this balance when invoking different decision stopping rules. The task design allows us to estimate the temporal weighting of sensory information for the decisions, and we find that different stopping rules did not result in systematic differences in that weighting. We also find bidirectional post-error alterations of decision strategy that depend on the type of error and effectively reduce the probability of making consecutive mistakes of the same type. This is a generalization to change detection tasks of the widespread observation of unidirectional post-error slowing in forced-choice tasks. On the basis of these results, we suggest change detection tasks as a promising paradigm to study the neural mechanisms that support flexible control of decision rules.NEW & NOTEWORTHY Flexible decision stopping rules confer control over decision processes. Using an auditory change detection task, we found that alterations of decision stopping rules did not result in systematic changes in the temporal weighting of sensory information. We also found that post-error alterations of decision stopping rules depended on the type of mistake subjects make. These results provide guidance for understanding the neural mechanisms that control decision stopping rules, one of the critical components of decision making and behavioral flexibility.


Assuntos
Percepção Auditiva , Tomada de Decisões , Encéfalo/fisiologia , Feminino , Humanos , Masculino , Adulto Jovem
13.
Neuron ; 95(2): 385-398.e5, 2017 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-28669543

RESUMO

Decision-making in dynamic environments often involves accumulation of evidence, in which new information is used to update beliefs and select future actions. Using in vivo cellular resolution imaging in voluntarily head-restrained rats, we examined the responses of neurons in frontal and parietal cortices during a pulse-based accumulation of evidence task. Neurons exhibited activity that predicted the animal's upcoming choice, previous choice, and graded responses that reflected the strength of the accumulated evidence. The pulsatile nature of the stimuli enabled characterization of the responses of neurons to a single quantum (pulse) of evidence. Across the population, individual neurons displayed extensive heterogeneity in the dynamics of responses to pulses. The diversity of responses was sufficiently rich to form a temporal basis for accumulated evidence estimated from a latent variable model. These results suggest that heterogeneous, often transient sensory responses distributed across the fronto-parietal cortex may support working memory on behavioral timescales. VIDEO ABSTRACT.


Assuntos
Potenciais de Ação/fisiologia , Comportamento de Escolha/fisiologia , Tomada de Decisões/fisiologia , Lobo Frontal/fisiologia , Memória de Curto Prazo/fisiologia , Neurônios/fisiologia , Lobo Parietal/fisiologia , Animais , Comportamento Animal/fisiologia , Ratos , Fatores de Tempo
14.
Neuron ; 93(1): 15-31, 2017 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-28056343

RESUMO

Perceptual decision making is the process by which animals detect, discriminate, and categorize information from the senses. Over the past two decades, understanding how perceptual decisions are made has become a central theme in the neurosciences. Exceptional progress has been made by recording from single neurons in the cortex of the macaque monkey and using computational models from mathematical psychology to relate these neural data to behavior. More recently, however, the range of available techniques and paradigms has dramatically broadened, and researchers have begun to harness new approaches to explore how rodents and humans make perceptual decisions. The results have illustrated some striking convergences with findings from the monkey, but also raised new questions and provided new theoretical insights. In this review, we summarize key findings, and highlight open challenges, for understanding perceptual decision making in rodents, monkeys, and humans.


Assuntos
Encéfalo/fisiologia , Tomada de Decisões/fisiologia , Neurônios/fisiologia , Percepção/fisiologia , Animais , Mapeamento Encefálico , Eletroencefalografia , Neuroimagem Funcional , Humanos , Macaca , Imageamento por Ressonância Magnética , Magnetoencefalografia , Camundongos , Técnicas de Patch-Clamp , Ratos
15.
Curr Opin Neurobiol ; 37: 149-157, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26878969

RESUMO

Gradual accumulation of evidence favoring one or another choice is considered a core component of many different types of decisions, and has been the subject of many neurophysiological studies in non-human primates. But its neural circuit mechanisms remain mysterious. Investigating it in rodents has recently become possible, facilitating perturbation experiments to delineate the relevant causal circuit, as well as the application of other tools more readily available in rodents. In addition, advances in stimulus design and analysis have aided studying the relevant neural encoding. In complement to ongoing non-human primate studies, these newly available model systems and tools place the field at an exciting time that suggests that the dynamical circuit mechanisms underlying accumulation of evidence could soon be revealed.


Assuntos
Comportamento de Escolha/fisiologia , Animais , Modelos Animais , Neurofisiologia/tendências , Roedores/fisiologia
16.
Biofouling ; 31(6): 493-502, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26218247

RESUMO

Diatoms are a major component of microbial biofouling layers that develop on man-made surfaces placed in aquatic environments, resulting in significant economic and environmental impacts. This paper describes surface functionalisation of the inherently conducting polymers (ICPs) polypyrrole (PPy) and polyaniline (PANI) with poly(ethylene glycol) (PEG) and their efficacy as fouling resistant materials. Their ability to resist interactions with the model protein bovine serum albumin (BSA) was tested using a quartz crystal microbalance with dissipation monitoring (QCM-D). The capacity of the ICP-PEG materials to prevent settlement and colonisation of the fouling diatom Amphora coffeaeformis (Cleve) was also assayed. Variations were demonstrated in the dopants used during ICP polymerisation, along with the PEG molecular weight, and the ICP-PEG reaction conditions, all playing a role in guiding the eventual fouling resistant properties of the materials. Optimised ICP-PEG materials resulted in a significant reduction in BSA adsorption, and > 98% reduction in diatom adhesion.


Assuntos
Compostos de Anilina/química , Incrustação Biológica/prevenção & controle , Diatomáceas/efeitos dos fármacos , Polietilenoglicóis/química , Polímeros/química , Pirróis/química , Adsorção , Animais , Bovinos , Diatomáceas/fisiologia , Peso Molecular , Polimerização , Técnicas de Microbalança de Cristal de Quartzo , Soroalbumina Bovina/química , Propriedades de Superfície
17.
Elife ; 42015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25869470

RESUMO

Numerous brain regions have been shown to have neural correlates of gradually accumulating evidence for decision-making, but the causal roles of these regions in decisions driven by accumulation of evidence have yet to be determined. Here, in rats performing an auditory evidence accumulation task, we inactivated the frontal orienting fields (FOF) and posterior parietal cortex (PPC), two rat cortical regions that have neural correlates of accumulating evidence and that have been proposed as central to decision-making. We used a detailed model of the decision process to analyze the effect of inactivations. Inactivation of the FOF induced substantial performance impairments that were quantitatively best described as an impairment in the output pathway of an evidence accumulator with a long integration time constant (>240 ms). In contrast, we found a minimal role for PPC in decisions guided by accumulating auditory evidence, even while finding a strong role for PPC in internally-guided decisions.


Assuntos
Mapeamento Encefálico , Lobo Parietal/fisiologia , Córtex Pré-Frontal/fisiologia , Análise e Desempenho de Tarefas , Animais , Comportamento Animal , Viés , Comportamento de Escolha , Masculino , Modelos Neurológicos , Ratos Long-Evans
18.
Nature ; 520(7546): 220-3, 2015 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-25600270

RESUMO

Gradual accumulation of evidence is thought to be fundamental for decision-making, and its neural correlates have been found in several brain regions. Here we develop a generalizable method to measure tuning curves that specify the relationship between neural responses and mentally accumulated evidence, and apply it to distinguish the encoding of decision variables in posterior parietal cortex and prefrontal cortex (frontal orienting fields, FOF). We recorded the firing rates of neurons in posterior parietal cortex and FOF from rats performing a perceptual decision-making task. Classical analyses uncovered correlates of accumulating evidence, similar to previous observations in primates and also similar across the two regions. However, tuning curve assays revealed that while the posterior parietal cortex encodes a graded value of the accumulating evidence, the FOF has a more categorical encoding that indicates, throughout the trial, the decision provisionally favoured by the evidence accumulated so far. Contrary to current views, this suggests that premotor activity in the frontal cortex does not have a role in the accumulation process, but instead has a more categorical function, such as transforming accumulated evidence into a discrete choice. To probe causally the role of FOF activity, we optogenetically silenced it during different time points of the trial. Consistent with a role in committing to a categorical choice at the end of the evidence accumulation process, but not consistent with a role during the accumulation itself, a behavioural effect was observed only when FOF silencing occurred at the end of the perceptual stimulus. Our results place important constraints on the circuit logic of brain regions involved in decision-making.


Assuntos
Tomada de Decisões/fisiologia , Lobo Parietal/fisiologia , Córtex Pré-Frontal/fisiologia , Animais , Halorrodopsinas/metabolismo , Masculino , Vias Neurais , Neurônios/fisiologia , Lobo Parietal/citologia , Córtex Pré-Frontal/citologia , Ratos , Ratos Long-Evans
19.
Elife ; 32014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24867216

RESUMO

Decision making often involves a tradeoff between speed and accuracy. Previous studies indicate that neural activity in the lateral intraparietal area (LIP) represents the gradual accumulation of evidence toward a threshold level, or evidence bound, which terminates the decision process. The level of this bound is hypothesized to mediate the speed-accuracy tradeoff. To test this, we recorded from LIP while monkeys performed a motion discrimination task in two speed-accuracy regimes. Surprisingly, the terminating threshold levels of neural activity were similar in both regimes. However, neurons recorded in the faster regime exhibited stronger evidence-independent activation from the beginning of decision formation, effectively reducing the evidence-dependent neural modulation needed for choice commitment. Our results suggest that control of speed vs accuracy may be exerted through changes in decision-related neural activity itself rather than through changes in the threshold applied to such neural activity to terminate a decision.


Assuntos
Tomada de Decisões , Modelos Neurológicos , Neurônios/fisiologia , Animais , Teorema de Bayes , Comportamento Animal , Comportamento de Escolha , Macaca , Percepção de Movimento , Neurofisiologia , Estimulação Luminosa , Tempo de Reação , Reprodutibilidade dos Testes , Fatores de Tempo
20.
Biofouling ; 29(10): 1155-67, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24063598

RESUMO

The ability to control the interaction between proteins and cells with biomaterials is critical for the effective application of materials for a variety of biomedical applications. Herein, the surface modification of the biological dopant dextran sulphate-doped polypyrrole (PPy-DS) with poly(ethylene glycol) to generate a biomaterial interface that is highly resistant to protein and cellular adhesion is described. Thiolated poly(ethylene glycol) (PEG-thiol) was covalently bound to PPy-DS backbone via a thiol-ene reaction. The surface resistance to an extracellular matrix protein fibronectin increased with increasing molecular weight and concentration of PEG-thiol, and was further optimised via increasing the reaction temperature and the pH of the reactant aqueous solution. Optimised surface modification conditions substantially reduced interfacial protein adsorption, with the complete inhibition of adhesion and colonisation by primary mouse myoblasts. PEG-thiol-modified inherently conducting polymers are highly protein resistant multifunctional materials that are promising compounds for a range of biomedical and aquatic applications.


Assuntos
Incrustação Biológica/prevenção & controle , Biopolímeros/química , Adesão Celular/efeitos dos fármacos , Polímeros/química , Proteínas/química , Pirróis/química , Microscopia de Força Atômica , Fosfenos , Polietilenoglicóis/química , Compostos de Sulfidrila/química , Propriedades de Superfície , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...