Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Atmos Pollut Res ; 13(4): 1-9, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36777262

RESUMO

Two widely used PM2.5 monitors in the United States (U.S.) designated as federal equivalent methods (FEMs) by the U.S. Environmental Protection Agency were collocated for 15 months in Sarajevo, Bosnia and Herzegovina (BiH) to evaluate their comparability. With differing measurement principles, the FEMs (Met One BAM-1020 and Teledyne API T640) exhibited unique responses to the significant range in PM2.5 over the study period. During the winter months when concentrations greatly increased (e.g., daily PM2.5 > 100 µg m-3), the BAM-1020 had intermittent malfunctioning nozzle contact to the collection tape, resulting in periods of data invalidation. Increased operator observation and doubling the cleaning frequency were required to maintain proper operation. The hourly data from the BAM-1020, which detects PM2.5 via beta-attenuation of particles loaded to the collection tape, indicated higher noise at concentrations below 40 µg m-3 relative to the T640, which detects PM2.5 via an optical method. Above this concentration threshold, the two instruments appear to have comparable hourly fluctuations in the data. Relative to the BAM-1020, the T640 reported higher concentrations when PM2.5 is above 80 µg m-3. A linear regression equation was developed and applied to adjust T640 PM2.5 high concentration values, resulting in 24-hr average T640adj PM2.5 values closely matching that from the BAM-1020 for the full concentration range. Based on the T640adj values, the annual average for Sarajevo was calculated at the site to be 42 µg m-3, with significant seasonality resulting in over 7-fold higher concentrations in the months of December-January compared to June-July.

2.
Artigo em Inglês | MEDLINE | ID: mdl-32665795

RESUMO

Elevated air pollution levels adjacent to major highways are an ongoing topic of public health concern worldwide. Black carbon (BC), a component of particulate matter (PM) emitted by diesel and gasoline vehicles, was measured continuously via a filter-based light absorption technique over ~ 16 months at four different stations positioned on a perpendicular trajectory to a major highway in Las Vegas, NV. During downwind conditions (winds from the west), BC at 20 m from the highway was 32 and 60% higher than concentrations at 100 and 300 m from the roadway, respectively. Overall highest roadside (20-m site) BC concentrations were observed during the time period of 4 a.m.-8 a.m. under low-speed variable winds (3.02 µg/m3) or downwind conditions (2.84 µg/m3). The 20-m site BC concentrations under downwind conditions are 85% higher on weekday periods compared to weekends during the time period of 4 a.m.-8 a.m. Whereas total traffic volume was higher on weekdays versus weekends and differed by approximately 3% on weekdays versus weekends, similarly, the detected heavy-duty fraction was higher on weekdays versus weekends and differed by approximately 21% on weekdays versus weekend. Low wind speeds predominated during early morning hours, leading to higher BC concentrations during early morning hours despite the maximum traffic volume occurring later in the day. No noticeable impact from the airport or nearby arterial roadways was observed, with the 300-m site remaining the lowest of the four-site network when winds were from the east. Multivariate linear regression analysis revealed that heavy-duty traffic volume, light-duty traffic volume, wind speed, weekday versus weekend, surface friction velocity, ambient temperature, and the background BC concentration were significant predictors of roadside BC concentrations. Comparison of BC and PM2.5 downwind concentration gradients indicates that the BC component contributes substantially to the PM2.5 increase in roadside environments. These results suggest that BC is an important indicator to assess the contribution of primary traffic emissions to near-road PM2.5 concentrations, providing opportunities to evaluate the feasibility and effectiveness of mitigation strategies.

3.
J Air Waste Manag Assoc ; 59(5): 579-90, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19583158

RESUMO

A current re-engineering of the United States routine ambient monitoring networks intended to improve the balance in addressing both regulatory and scientific objectives is addressed in this paper. Key attributes of these network modifications include the addition of collocated instruments to produce multiple pollutant characterizations across a range of representative urban and rural locations in a new network referred to as the National Core Monitoring Network (NCore). The NCore parameters include carbon monoxide (CO), sulfur dioxide (SO2), reactive nitrogen (NOy), ozone (O3), and ammonia (NH3) gases and the major fine particulate matter (PM2.5) aerosol components (ions, elemental and organic carbon fractions, and trace metals). The addition of trace gas instruments, deployed at existing chemical speciation sites and designed to capture concentrations well below levels of national air quality standards, is intended to support both long-term epidemiological studies and regional-scale air quality model evaluation. In addition to designing the multiple pollutant NCore network, steps were taken to assess the current networks on the basis of spatial coverage and redundancy criteria, and mechanisms were developed to facilitate incorporation of continuously operating particulate matter instruments.


Assuntos
Poluentes Atmosféricos/química , Poluição do Ar/prevenção & controle , Monitoramento Ambiental/legislação & jurisprudência , Monitoramento Ambiental/métodos , Comunicação , Técnicas de Planejamento , Estados Unidos , United States Environmental Protection Agency
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...