Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 9(10): 2750-2755, 2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-29732059

RESUMO

Water oxidation is catalysed in Nature by a redox cofactor embedded in a hydrogen-bonded network designed to orchestrate proton transfer throughout the challenging 4 electron reaction. In order to mimic aspects of this microenvironment, [CoLDMA(CH3CN)2][BF4]2 (2) was synthesized, where LDMA is a dipyridyldiamine ligand with two dimethylamine bases in the secondary coordination sphere. Structural characterization of the corresponding aqua complexes establish hydrogen bonding between the bound water and pendant base(s). Cyclic voltammetry of [CoLDMA(CH3CN)2][BF4]2 (2) reveals enhanced oxidative current upon titration with water and controlled potential electrolysis confirms evolution of O2. The related complex [CoLH(CH3CN)2][BF4]2 (1), which has the same primary coordination environment as 2 but lacks pendant bases, is inactive. The structural and electrochemical studies illustrate the role positioned proton relays can play in promoting redox reactivity.

2.
ACS Appl Mater Interfaces ; 10(15): 13211-13217, 2018 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-29624364

RESUMO

The immobilization of molecular species onto electrodes presents a direct route to modifying surface properties with molecular fidelity. Conventional methods include direct covalent attachment and physisorption of pyrene-appended molecular compounds to electrodes with aromatic character through π-π interactions. A recently reported hybrid approach extends the synthetic flexibility of the latter to a broader range of electrode materials. We report an application of this approach to immobilization of pyrene-appended ferrocene onto pyrene-functionalized indium tin oxide (ITO). The modified ITO surfaces were characterized using X-ray photoelectron spectroscopy, fluorescence spectroscopy, and electrochemical techniques. An electron-transfer rate constant ( kapp) of 100 ± 8 s-1 was measured between the electrode and immobilized ferrocene using electrochemical methods. For comparison, a ferrocene-modified electrode using conventional covalent attachment of vinylferrocene was also prepared, and kapp was measured to be 9 ± 2 s-1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...