Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38676103

RESUMO

This paper investigates the manufacturing uncertainties at a 60 GHz millimeter-wave band for the monolithic hybrid microwave integrated circuits (MHMIC) fabrication process. It specifically deals with the implementation tolerances of thin-film gold microstrip transmission lines, titanium oxide thin-layer resistors, microstrip quarter-wavelength radial stubs, and active device implementation using the gold-bonding ribbons. The impacts of these manufacturing tolerances are assessed and experimentally quantified through prototyped MHMIC circuits. This allows us, on one hand, to identify the acceptable amount of dimensional variation enabling reasonable performances. On the other hand, it aims to establish a relationship between the manufacturing tolerances and the circuit parameters to provide more flexibility for the tolerance compensation and accuracy enhancement of the MHMIC fabrication processes.

2.
Sensors (Basel) ; 23(1)2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36617074

RESUMO

This paper examines the effect of finger fat pad thickness on the accuracy performance of complementary split-ring resonator (CSRR)-based microwave sensors for non-invasive blood glucose level detection. For this purpose, a simplified four-layer Cole-Cole model along with a CSRR-based microwave sensor have been comprehensively analyzed and validated through experimentation. Computed scattering parameter (S-parameter) responses to different fat layer thicknesses are employed to verify the concordance of the studied model with the measurement results. In this respect, a figure of merit (FM) based on the normalized squared difference is introduced to assess the accuracy of the considered Cole-Cole model. We have demonstrated that the analyzed model agrees closely with the experimental validation. In fact, the maximum error difference for all five fingertips does not exceed 1.73 dB over the entire frequency range of interest, from 1 GHz to 4 GHz.


Assuntos
Glicemia , Micro-Ondas , Tecido Adiposo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...