Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Aquat Toxicol ; 128-129: 113-23, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23280489

RESUMO

In recent years, a growing number of human pharmaceuticals have been detected in the aquatic environment, generally at low concentrations (sub-ng/L-low µg/L). In most cases, these compounds are characterised by highly specific modes of action, and the evolutionary conservation of drug targets in wildlife species suggests the possibility that pharmaceuticals present in the environment may cause toxicological effects by acting through the same targets as they do in humans. Our research addressed the question of whether or not dutasteride, a pharmaceutical used to treat benign prostatic hyperplasia, may cause adverse effects in a teleost fish, the fathead minnow (Pimephales promelas), by inhibiting the activity of both isoforms of 5α-reductase (5αR), the enzyme that converts testosterone into dihydrotestosterone (DHT). Mammalian pharmacological and toxicological information were used to guide the experimental design and the selection of relevant endpoints, according to the so-called "read-across approach", suggesting that dutasteride may affect male fertility and steroid hormone dynamics. Therefore, a 21-day reproduction study was conducted to determine the effects of dutasteride (10, 32 and 100 µg/L) on fish reproduction. Exposure to dutasteride significantly reduced fecundity of fish and affected several aspects of reproductive endocrine functions in both males and females. However, none of the observed adverse effects occurred at concentrations of exposure lower than 32 µg/L; this, together with the low volume of drug prescribed every year (10.34 kg in the UK in 2011), and the extremely low predicted environmental concentration (0.03 ng/L), suggest that, at present, the potential presence of dutasteride in the environment does not represent a threat to wild fish populations.


Assuntos
Inibidores de 5-alfa Redutase/toxicidade , Azasteroides/toxicidade , Cyprinidae/fisiologia , Reprodução/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Azasteroides/análise , Tamanho Corporal/efeitos dos fármacos , Dutasterida , Feminino , Hormônios Esteroides Gonadais/sangue , Gônadas/efeitos dos fármacos , Masculino , Caracteres Sexuais , Espermatozoides/efeitos dos fármacos , Vitelogeninas/sangue , Água/química , Poluentes Químicos da Água/análise
3.
Environ Toxicol Chem ; 31(6): 1407-15, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22488655

RESUMO

In an effort to assess the combined risk estrone (E1), 17ß-estradiol (E2), 17α-ethinyl estradiol (EE2), and estriol (E3) pose to aquatic wildlife across United States watersheds, two sets of predicted-no-effect concentrations (PNECs) for significant reproductive effects in fish were compared to predicted environmental concentrations (PECs). One set of PNECs was developed for evaluation of effects following long-term exposures. A second set was derived for short-term exposures. Both sets of PNECs are expressed as a 17ß-estradiol equivalent (E2-eq), with 2 and 5 ng/L being considered the most likely levels above which fish reproduction may be harmed following long-term and short-term exposures, respectively. A geographic information system-based water quality model, Pharmaceutical Assessment and Transport Evaluation (PhATE™), was used to compare these PNECs to mean and low flow concentrations of the steroid estrogens across 12 U.S. watersheds. These watersheds represent approximately 19% of the surface area of the 48 North American states, contain 40 million people, and include over 44,000 kilometers of rivers. This analysis determined that only 0.8% of the segments (less than 1.1% of kilometers) of these watersheds would have a mean flow E2-eq concentration exceeding the long-term PNEC of 2.0 ng/L; only 0.5% of the segments (less than 0.8% of kilometers) would have a critical low flow E2-eq exceeding the short-term PNEC of 5 ng/L. Those few river segments where the PNECs were exceeded were effluent dominated, being either headwater streams with a publicly owned treatment works (POTW), or flowing through a highly urbanized environment with one or several POTWs. These results suggest that aquatic species in most U.S. surface waters are not at risk from steroid estrogens that may be present as a result of human releases.


Assuntos
Disruptores Endócrinos/toxicidade , Estrogênios/toxicidade , Poluição Química da Água/estatística & dados numéricos , Abastecimento de Água/estatística & dados numéricos , Animais , Disruptores Endócrinos/análise , Estradiol/análise , Estradiol/toxicidade , Estriol/análise , Estriol/toxicidade , Estrogênios/análise , Estrona/análise , Estrona/toxicidade , Etinilestradiol/análise , Etinilestradiol/toxicidade , Peixes , Humanos , Medição de Risco , Rios/química , Estados Unidos , Urbanização , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
4.
Integr Environ Assess Manag ; 8(3): 530-42, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22162313

RESUMO

This article presents the capability expansion of the PhATE™ (pharmaceutical assessment and transport evaluation) model to predict concentrations of trace organics in sludges and biosolids from municipal wastewater treatment plants (WWTPs). PhATE was originally developed as an empirical model to estimate potential concentrations of active pharmaceutical ingredients (APIs) in US surface and drinking waters that could result from patient use of medicines. However, many compounds, including pharmaceuticals, are not completely transformed in WWTPs and remain in biosolids that may be applied to land as a soil amendment. This practice leads to concerns about potential exposures of people who may come into contact with amended soils and also about potential effects to plants and animals living in or contacting such soils. The model estimates the mass of API in WWTP influent based on the population served, the API per capita use, and the potential loss of the compound associated with human use (e.g., metabolism). The mass of API on the treated biosolids is then estimated based on partitioning to primary and secondary solids, potential loss due to biodegradation in secondary treatment (e.g., activated sludge), and potential loss during sludge treatment (e.g., aerobic digestion, anaerobic digestion, composting). Simulations using 2 surrogate compounds show that predicted environmental concentrations (PECs) generated by PhATE are in very good agreement with measured concentrations, i.e., well within 1 order of magnitude. Model simulations were then carried out for 18 APIs representing a broad range of chemical and use characteristics. These simulations yielded 4 categories of results: 1) PECs are in good agreement with measured data for 9 compounds with high analytical detection frequencies, 2) PECs are greater than measured data for 3 compounds with high analytical detection frequencies, possibly as a result of as yet unidentified depletion mechanisms, 3) PECs are less than analytical reporting limits for 5 compounds with low analytical detection frequencies, and 4) the PEC is greater than the analytical method reporting limit for 1 compound with a low analytical detection frequency, possibly again as a result of insufficient depletion data. Overall, these results demonstrate that PhATE has the potential to be a very useful tool in the evaluation of APIs in biosolids. Possible applications include: prioritizing APIs for assessment even in the absence of analytical methods; evaluating sludge processing scenarios to explore potential mitigation approaches; using in risk assessments; and developing realistic nationwide concentrations, because PECs can be represented as a cumulative probability distribution. Finally, comparison of PECs to measured concentrations can also be used to identify the need for fate studies of compounds of interest in biosolids.


Assuntos
Cidades , Modelos Teóricos , Compostos Orgânicos/análise , Esgotos/química , Eliminação de Resíduos Líquidos , Resíduos de Drogas/análise , Meio Ambiente , Humanos
5.
Environ Toxicol Chem ; 28(12): 2725-32, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19645524

RESUMO

An evaluation of measured and predicted concentrations of 17-ethinylestradiol in surface waters of the United States and Europe was conducted to develop expected long-term exposure concentrations for this compound. Measured environmental concentrations (MECs) in surface waters were identified from the literature. Predicted environmental concentrations (PECs) were generated for European and U.S. watersheds using the GREAT-ER and PhATE models, respectively. The majority of MECs are nondetect and generally consistent with model PECs and conservative mass balance calculations. However, the highest MECs are not consistent with concentrations derived from conservative (worst-case) mass balance estimates or model PECs. A review of analytical methods suggests that tandem or high-resolution mass spectrometry methods with extract cleanup result in lower detection limits and lower reported concentrations consistent with model predictions and bounding estimates. Based on model results using PhATE and GREAT-ER, the 90th-percentile low-flow PECs in surface water are approximately 0.2 and 0.3 ng/L for the United States and Europe, respectively. These levels represent conservative estimates of long-term exposure that can be used for risk assessment purposes. Our analysis also indicates that average concentrations are one to two orders of magnitude lower than these 90th-percentile estimates. Higher reported concentrations (e.g., greater than the 99th-percentile PEC of approximately 1 ng/L) could result from methodological problems or unusual environmental circumstances; however, such concentrations are not representative of levels generally found in the environment, warrant special scrutiny, and are not appropriate for use in risk assessments of long-term exposures.


Assuntos
Monitoramento Ambiental , Etinilestradiol/análise , Água Doce/análise , Medição de Risco , Poluentes Químicos da Água/análise , Europa (Continente) , Estados Unidos , Eliminação de Resíduos Líquidos , Purificação da Água
6.
Environ Sci Technol ; 38(12): 3351-9, 2004 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-15260335

RESUMO

Paroxetine hydrochloride hemihydrate (the active ingredient in Paxil) is a pharmaceutical compound used for the treatment of depression, social anxiety disorder, obsessive compulsive disorder, panic disorder, and generalized anxiety disorder. Paroxetine (PA) is extensively metabolized in humans, with about 97% of the parent compound being excreted as metabolites through the urine and feces of patients. Therefore PA and metabolites have the potential to be discharged into wastewater treatment systems after therapeutic use. PA and its major human metabolite (PM) were investigated using studies designed to describe physical/chemical characteristics and determine their fate and effects in the aquatic environment. A significant portion of the PM entering a wastewater treatment plant would be expected to biodegrade given the higher activated sludge solids concentrations present in a typical wastewater treatment plant. The potential for direct photolysis of PM is also possible based on photolysis results for PA itself. These results provide strong support for expecting that PA and PM residuals will not persist in the aquatic environment after discharge from a wastewater treatment facility. This conclusion is also supported by the results of a USGS monitoring study, where no PM was detected in any of the samples at the 260 ng/L reporting limit. The results presented here also demonstrate the importance of understanding the human metabolism of a pharmaceutical so that the appropriate molecule(s) is used for fate and effects studies. In addition to the PA fate studies, PM was investigated using studies designed to determine potential environmental effects and a predicted no effect level (PNEC). The average measured activated sludge respiration inhibition value (EC50) for PM was 82 mg/L. The measured Microtox EC50 value was 33.0 mg/L, while the Daphnia magna EC50 value was 35.0 mg/L. The PNEC for PM was calculated to be 35.0 microg/L. Fate data were then used in a new watershed-based environmental risk assessment model, PhATE, to predict environmental concentrations (PECs). Comparison of the calculated PECs with the PNEC allows an assessment of potential environmental risk. Within the 1-99% of stream segments in the PhATE model, PEC values ranged from 0.003 to 100 ng/L. The risk assessment PEC/PNEC ratios ranged from approximately 3 x 10(-8) to approximately 3 x 10(-3), indicating a wide margin of safety, since a PEC/PNEC ratio <1 is generally considered to represent a low risk to the environment. In addition, Microtox studies carried out on PM biodegradation byproducts indicated no detectable residual toxicity. Any compounds in the environment as a result of the biodegradation of PM should be innocuous polar byproducts that should not exert any toxic effects.


Assuntos
Paroxetina/toxicidade , Inibidores Seletivos de Recaptação de Serotonina/toxicidade , Eliminação de Resíduos Líquidos/métodos , Animais , Biodegradação Ambiental , Daphnia , Dose Letal Mediana , Paroxetina/metabolismo , Fotoquímica , Medição de Risco , Inibidores Seletivos de Recaptação de Serotonina/metabolismo , Esgotos/microbiologia , Vibrio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...