Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fish Dis ; 45(12): 1805-1816, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35946585

RESUMO

Acute Hepatopancreatic Necrosis Disease (AHPND), caused by bacterial isolates expressing PirAB binary toxins, represents the severest and most economically destructive disease affecting penaeid shrimp. Its rapid disease progression and associated massive mortalities call for vigilant monitoring and early diagnosis, but molecular detection methods that simultaneously satisfy the requirements of sensitivity, specificity, and portability are still scarce. In this work, the CRISPR-Cas12a technology was harnessed for the development of two fluorescent assays compatible with naked-eye visualization. The first assay, AP4-Cas12a, was based on the OIE-recommended AP4 two-tubed nested PCR method and was designed to bypass the time-consuming and potentially hazardous agarose gel electrophoresis step. Using AP4-Cas12a, the detection limit of 10 copies per reaction could be achieved within less than 30 minutes post-PCR. The second assay, RPA-Cas12a, utilized recombinase polymerase amplification (RPA) to rapidly and isothermally amplify the target DNA, followed by amplicon detection by Cas12a, resulting in a protocol that can be completed in less than an hour at a constant temperature of 37°C. The detection limit of RPA-Cas12a is 100 copies of plasmid DNA or 100 fg of bacterial genomic DNA per reaction. Importantly, we validated that both assays are compatible with a previously reported smartphone-based device for facile visualization of fluorescence, thereby providing an affordable option that requires less consumables than lateral flow detection. Using this portable device for readouts, the AP4-Cas12a and RPA-Cas12a methods showed excellent concordance with the AP4-agarose gel electrophoresis approach in the evaluation of clinical samples. Therefore, the developed Cas12a assays have the potential to streamline both in-laboratory and onsite diagnosis of AHPND.


Assuntos
Doenças dos Peixes , Smartphone , Animais , Técnicas de Amplificação de Ácido Nucleico/veterinária , Técnicas de Amplificação de Ácido Nucleico/métodos , DNA , Necrose
2.
Cell Rep Methods ; 2(7): 100245, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35880018

RESUMO

We describe a modular computational framework for analyzing cell-wide spatiotemporal signaling dynamics in single-cell microscopy experiments that accounts for the experiment-specific geometric and diffractive complexities that arise from heterogeneous cell morphologies and optical instrumentation. Inputs are unique cell geometries and protein concentrations derived from confocal stacks and spatiotemporally varying environmental stimuli. After simulating the system with a model of choice, the output is convolved with the microscope point-spread function for direct comparison with the observable image. We experimentally validate this approach in single cells with BcLOV4, an optogenetic membrane recruitment system for versatile control over cell signaling, using a three-dimensional non-linear finite element model with all parameters experimentally derived. The simulations recapitulate observed subcellular and cell-to-cell variability in BcLOV4 signaling, allowing for inter-experimental differences of cellular and instrumentation origins to be elucidated and resolved for improved interpretive robustness. This single-cell approach will enhance optogenetics and spatiotemporally resolved signaling studies.


Assuntos
Optogenética , Transdução de Sinais , Optogenética/métodos , Membrana Celular/metabolismo , Membranas , Microscopia Confocal/métodos
3.
ACS Omega ; 6(4): 2727-2733, 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33553890

RESUMO

Rapid, accurate, and low-cost detection of SARS-CoV-2 is crucial to contain the transmission of COVID-19. Here, we present a cost-effective smartphone-based device coupled with machine learning-driven software that evaluates the fluorescence signals of the CRISPR diagnostic of SARS-CoV-2. The device consists of a three-dimensional (3D)-printed housing and low-cost optic components that allow excitation of fluorescent reporters and selective transmission of the fluorescence emission to a smartphone. Custom software equipped with a binary classification model has been developed to quantify the acquired fluorescence images and determine the presence of the virus. Our detection system has a limit of detection (LoD) of 6.25 RNA copies/µL on laboratory samples and produces a test accuracy of 95% and sensitivity of 97% on 96 nasopharyngeal swab samples with transmissible viral loads. Our quantitative fluorescence score shows a strong correlation with the quantitative reverse transcription polymerase chain reaction (RT-qPCR) Ct values, offering valuable information of the viral load and, therefore, presenting an important advantage over nonquantitative readouts.

4.
Integr Biol (Camb) ; 12(1): 12-20, 2020 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-32055833

RESUMO

Tumor cell heterogeneity, either at the genotypic or the phenotypic level, is a hallmark of cancer. Tumor cells exhibit large variations, even among cells derived from the same origin, including cell morphology, speed and motility type. However, current work for quantifying tumor cell behavior is largely population based and does not address the question of cell heterogeneity. In this article, we utilize Lévy distribution analysis, a method known in both social and physical sciences for quantifying rare events, to characterize the heterogeneity of tumor cell motility. Specifically, we studied the breast tumor cell (MDA-MB-231 cell line) velocity statistics when the cells were subject to well-defined lymphoid chemokine (CCL19) gradients using a microfluidic platform. Experimental results showed that the tail end of the velocity distribution of breast tumor cell was well described by a Lévy function. The measured Lévy exponent revealed that cell motility was more heterogeneous when CCL19 concentration was near the dynamic kinetic binding constant to its corresponding receptor CCR7. This work highlighted the importance of tumor microenvironment in modulating tumor cell heterogeneity and invasion.


Assuntos
Neoplasias da Mama/metabolismo , Quimiocina CCL19/metabolismo , Linfócitos/metabolismo , Microfluídica , Algoritmos , Linhagem Celular Tumoral , Movimento Celular , Quimiotaxia , Células Dendríticas/metabolismo , Matriz Extracelular/metabolismo , Feminino , Humanos , Cinética , Metástase Neoplásica , Distribuição Normal , Receptores CCR7/metabolismo , Microambiente Tumoral
5.
Curr Opin Struct Biol ; 57: 84-92, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30884362

RESUMO

Optical induction of intracellular signaling by membrane-associated and integral membrane proteins allows spatiotemporally precise control over second messenger signaling and cytoskeletal rearrangements that are important to cell migration, development, and proliferation. Optogenetic membrane recruitment of a protein-of-interest to control its signaling by altering subcellular localization is a versatile means to these ends. Here, we summarize the signaling characteristics and underlying structure-function of RGS-LOV photoreceptors as single-component membrane recruitment tools that rapidly, reversibly, and efficiently carry protein cargo from the cytoplasm to the plasma membrane by a light-regulated electrostatic interaction with the membrane itself. We place the technology-relevant features of these recently described natural photosensory proteins in context of summarized protein engineering and design strategies for optically controlling membrane protein signaling.


Assuntos
Membrana Celular/metabolismo , Membrana Celular/efeitos da radiação , Optogenética/métodos , Transdução de Sinais/genética , Transdução de Sinais/efeitos da radiação , Regulação Alostérica/genética , Regulação Alostérica/efeitos da radiação
6.
ACS Synth Biol ; 7(6): 1488-1495, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29792810

RESUMO

As fast terminators of G-protein coupled receptor (GPCR) signaling, regulators of G-protein signaling (RGS) serve critical roles in fine-tuning second messenger levels and, consequently, cellular responses to external stimuli. Here, we report the creation of an optogenetic RGS2 (opto-RGS2) that suppresses agonist-evoked calcium oscillations by the inactivation of Gαq protein. In this system, cryptochrome-mediated heterodimerization of the catalytic RGS2-box with its N-terminal amphipathic helix reconstitutes a functional membrane-localized complex that can dynamically suppress store-operated release of calcium. Engineered opto-RGS2 cell lines were used to establish the role of RGS2 as a key inhibitory feedback regulator of the stochasticity of the Gαq-mediated calcium spike timing. RGS2 reduced the stochasticity of carbachol-stimulated calcium oscillations, and the feedback inhibition was coupled to the global calcium elevation by calmodulin/RGS2 interactions. The identification of a critical negative feedback circuit exemplifies the utility of optogenetic approaches for interrogating RGS/GPCR biology and calcium encoding principles through temporally precise molecular gain-of-function.


Assuntos
Sinalização do Cálcio/fisiologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Optogenética/métodos , Proteínas RGS/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Carbacol/farmacologia , Criptocromos/genética , Criptocromos/metabolismo , Retroalimentação Fisiológica , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/antagonistas & inibidores , Células HEK293 , Humanos , Proteínas RGS/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Razão Sinal-Ruído , Processos Estocásticos
7.
Cell Syst ; 2(4): 283-8, 2016 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-27135540

RESUMO

It is known that the calcium-dependent transcription factor NFAT initiates transcription in response to pulsatile loads of calcium signal. However, the relative contributions of calcium oscillation frequency, amplitude, and duty cycle to transcriptional activity remain unclear. Here, we engineer HeLa cells to permit optogenetic control of intracellular calcium concentration using programmable LED arrays. This approach allows us to generate calcium oscillations of constant peak amplitude, in which frequency is varied while holding duty cycle constant, or vice versa. Using this setup and mathematical modeling, we show that NFAT transcriptional activity depends more on duty cycle, defined as the proportion of the integrated calcium concentration over the oscillation period, than on frequency alone. This demonstrates that NFAT acts primarily as a signal integrator of cumulative load rather than a frequency-selective decoder. This approach resolves a fundamental question in calcium encoding and demonstrates the value of optogenetics for isolating individual dynamical components of larger signaling behaviors.


Assuntos
Sinalização do Cálcio , Calcineurina , Cálcio , Cálcio da Dieta , Células HeLa , Humanos , Fatores de Transcrição NFATC , Optogenética
8.
PLoS One ; 8(7): e68422, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23869217

RESUMO

Chemokine-mediated directed tumor cell migration within a three dimensional (3D) matrix, or chemoinvasion, is an important early step in cancer metastasis. Despite its clinical importance, it is largely unknown how cytokine and growth factor gradients within the tumor microenvironment regulate chemoinvasion. We studied tumor cell chemoinvasion in well-defined and stable chemical gradients using a robust 3D microfluidic model. We used CXCL12 (also known as SDF-1α) and epidermal growth factor (EGF), two well-known extracellular signaling molecules that co-exist in the tumor microenvironment (e.g. lymph nodes or intravasation sites), and a malignant breast tumor cell line, MDA-MB-231, embedded in type I collagen. When subjected to SDF-1α gradients alone, MDA-MB-231 cells migrated up the gradient, and the measured chemosensitivity (defined as the average cell velocity along the direction of the gradient) followed the ligand - receptor (SDF-1α - CXCR4) binding kinetics. On the other hand, when subjected to EGF gradients alone, tumor cells increased their overall motility, but without statistically significant chemotactic (directed) migration, in contrast to previous reports using 2D chemotaxis assays. Interestingly, we found that the chemoinvasive behavior to SDF-1α gradients was abrogated or even reversed in the presence of uniform concentrations of EGF; however, the presence of SDF-1α and EGF together modulated tumor cell motility cooperatively. These findings demonstrate the capabilities of our microfluidic model in re-creating complex microenvironments for cells, and the importance of cooperative roles of multiple cytokine and growth factor gradients in regulating cell migration in 3D environments.


Assuntos
Movimento Celular , Quimiocina CXCL12/fisiologia , Fator de Crescimento Epidérmico/fisiologia , Microfluídica/métodos , Modelos Biológicos , Microambiente Tumoral , Linhagem Celular Tumoral , Quimiocina CXCL12/metabolismo , Quimiotaxia , Fator de Crescimento Epidérmico/metabolismo , Humanos , Microfluídica/instrumentação , Invasividade Neoplásica , Imagem com Lapso de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...