Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 5294, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31757945

RESUMO

A shared paradigm of mismatch repair (MMR) across biology depicts extensive exonuclease-driven strand-specific excision that begins at a distant single-stranded DNA (ssDNA) break and proceeds back past the mismatched nucleotides. Historical reconstitution studies concluded that Escherichia coli (Ec) MMR employed EcMutS, EcMutL, EcMutH, EcUvrD, EcSSB and one of four ssDNA exonucleases to accomplish excision. Recent single-molecule images demonstrated that EcMutS and EcMutL formed cascading sliding clamps on a mismatched DNA that together assisted EcMutH in introducing ssDNA breaks at distant newly replicated GATC sites. Here we visualize the complete strand-specific excision process and find that long-lived EcMutL sliding clamps capture EcUvrD helicase near the ssDNA break, significantly increasing its unwinding processivity. EcSSB modulates the EcMutL-EcUvrD unwinding dynamics, which is rarely accompanied by extensive ssDNA exonuclease digestion. Together these observations are consistent with an exonuclease-independent MMR strand excision mechanism that relies on EcMutL-EcUvrD helicase-driven displacement of ssDNA segments between adjacent EcMutH-GATC incisions.


Assuntos
Quebras de DNA de Cadeia Simples , DNA Helicases/fisiologia , Reparo de Erro de Pareamento de DNA/fisiologia , Proteínas de Escherichia coli/fisiologia , Escherichia coli/fisiologia , Proteínas MutL/fisiologia , DNA Helicases/metabolismo , Reparo do DNA/fisiologia , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Microscopia de Fluorescência , Proteínas MutL/metabolismo , Imagem Individual de Molécula
2.
J Biol Chem ; 293(37): 14285-14294, 2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30072380

RESUMO

Sliding clamps on DNA consist of evolutionarily conserved enzymes that coordinate DNA replication, repair, and the cellular DNA damage response. MutS homolog (MSH) proteins initiate mismatch repair (MMR) by recognizing mispaired nucleotides and in the presence of ATP form stable sliding clamps that randomly diffuse along the DNA. The MSH sliding clamps subsequently load MutL homolog (MLH/PMS) proteins that form a second extremely stable sliding clamp, which together coordinate downstream MMR components with the excision-initiation site that may be hundreds to thousands of nucleotides distant from the mismatch. Specific or nonspecific binding of other proteins to the DNA between the mismatch and the distant excision-initiation site could conceivably obstruct the free diffusion of these MMR sliding clamps, inhibiting their ability to initiate repair. Here, we employed bulk biochemical analysis, single-molecule fluorescence imaging, and mathematical modeling to determine how sliding clamps might overcome such hindrances along the DNA. Using both bacterial and human MSH proteins, we found that increasing the number of MSH sliding clamps on a DNA decreased the association of the Escherichia coli transcriptional repressor LacI to its cognate promoter LacO. Our results suggest a simple mechanism whereby thermal diffusion of MSH sliding clamps along the DNA alters the association kinetics of other DNA-binding proteins over extended distances. These observations appear generally applicable to any stable sliding clamp that forms on DNA.


Assuntos
DNA Bacteriano/metabolismo , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Thermus/metabolismo , Trifosfato de Adenosina/metabolismo , Pareamento Incorreto de Bases , Modelos Teóricos , Ligação Proteica , Ressonância de Plasmônio de Superfície
3.
Nucleic Acids Res ; 45(2): 685-698, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-27738136

RESUMO

Wrapping of genomic DNA into nucleosomes poses thermodynamic and kinetic barriers to biological processes such as replication, transcription, repair and recombination. Previous biochemical studies have demonstrated that in the presence of adenosine triphosphate (ATP) the human RAD51 (HsRAD51) recombinase can form a nucleoprotein filament (NPF) on double-stranded DNA (dsDNA) that is capable of unwrapping the nucleosomal DNA from the histone octamer (HO). Here, we have used single molecule Förster Resonance Energy Transfer (smFRET) to examine the real time nucleosome dynamics in the presence of the HsRAD51 NPF. We show that oligomerization of HsRAD51 leads to stepwise, but stochastic unwrapping of the DNA from the HO in the presence of ATP. The highly reversible dynamics observed in single-molecule trajectories suggests an antagonistic mechanism between HsRAD51 binding and rewrapping of the DNA around the HO. These stochastic dynamics were independent of the nucleosomal DNA sequence or the asymmetry created by the presence of a linker DNA. We also observed sliding and rotational oscillations of the HO with respect to the nucleosomal DNA. These studies underline the dynamic nature of even tightly associated protein-DNA complexes such as nucleosomes.


Assuntos
Histonas/metabolismo , Nucleossomos/metabolismo , Rad51 Recombinase/metabolismo , Trifosfato de Adenosina/metabolismo , DNA/genética , DNA/metabolismo , Replicação do DNA , Histonas/química , Humanos , Hidrólise , Modelos Biológicos , Nucleoproteínas/metabolismo , Ligação Proteica , Multimerização Proteica
4.
Nature ; 539(7630): 583-587, 2016 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-27851738

RESUMO

Mismatched nucleotides arise from polymerase misincorporation errors, recombination between heteroallelic parents and chemical or physical DNA damage. Highly conserved MutS (MSH) and MutL (MLH/PMS) homologues initiate mismatch repair and, in higher eukaryotes, act as DNA damage sensors that can trigger apoptosis. Defects in human mismatch repair genes cause Lynch syndrome or hereditary non-polyposis colorectal cancer and 10-40% of related sporadic tumours. However, the collaborative mechanics of MSH and MLH/PMS proteins have not been resolved in any organism. We visualized Escherichia coli (Ec) ensemble mismatch repair and confirmed that EcMutS mismatch recognition results in the formation of stable ATP-bound sliding clamps that randomly diffuse along the DNA with intermittent backbone contact. The EcMutS sliding clamps act as a platform to recruit EcMutL onto the mismatched DNA, forming an EcMutS-EcMutL search complex that then closely follows the DNA backbone. ATP binding by EcMutL establishes a second long-lived DNA clamp that oscillates between the principal EcMutS-EcMutL search complex and unrestricted EcMutS and EcMutL sliding clamps. The EcMutH endonuclease that targets mismatch repair excision only binds clamped EcMutL, increasing its DNA association kinetics by more than 1,000-fold. The assembly of an EcMutS-EcMutL-EcMutH search complex illustrates how sequential stable sliding clamps can modulate one-dimensional diffusion mechanics along the DNA to direct mismatch repair.


Assuntos
Reparo de Erro de Pareamento de DNA , DNA/metabolismo , Difusão , Proteínas de Escherichia coli/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas MutL/metabolismo , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Trifosfato de Adenosina/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/metabolismo , Endonucleases/química , Endonucleases/metabolismo , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Cinética , Complexos Multiproteicos/química , Proteínas MutL/química , Proteína MutS de Ligação de DNA com Erro de Pareamento/química , Transporte Proteico , Imagem Individual de Molécula
5.
Nat Commun ; 7: 11409, 2016 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-27108531

RESUMO

Retroviruses must integrate their linear viral cDNA into the host genome for a productive infection. Integration is catalysed by the retrovirus-encoded integrase (IN), which forms a tetramer or octamer complex with the viral cDNA long terminal repeat (LTR) ends termed an intasome. IN removes two 3'-nucleotides from both LTR ends and catalyses strand transfer of the recessed 3'-hydroxyls into the target DNA separated by 4-6 bp. Host DNA repair restores the resulting 5'-Flap and single-stranded DNA (ssDNA) gap. Here we have used multiple single molecule imaging tools to determine that the prototype foamy virus (PFV) retroviral intasome searches for an integration site by one-dimensional (1D) rotation-coupled diffusion along DNA. Once a target site is identified, the time between PFV strand transfer events is 470 ms. The majority of PFV intasome search events were non-productive. These observations identify new dynamic IN functions and suggest that target site-selection limits retroviral integration.


Assuntos
DNA/genética , Integrases/genética , Spumavirus/genética , Proteínas Virais/genética , Integração Viral , Animais , DNA/química , DNA/metabolismo , DNA de Cadeia Simples/química , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Difusão , Expressão Gênica , Humanos , Integrases/química , Integrases/metabolismo , Imagem Individual de Molécula/métodos , Spumavirus/metabolismo , Sequências Repetidas Terminais , Imagem com Lapso de Tempo/métodos , Proteínas Virais/química , Proteínas Virais/metabolismo
6.
Proc Natl Acad Sci U S A ; 113(12): 3281-6, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26951673

RESUMO

Mismatch repair (MMR) is activated by evolutionarily conserved MutS homologs (MSH) and MutL homologs (MLH/PMS). MSH recognizes mismatched nucleotides and form extremely stable sliding clamps that may be bound by MLH/PMS to ultimately authorize strand-specific excision starting at a distant 3'- or 5'-DNA scission. The mechanical processes associated with a complete MMR reaction remain enigmatic. The purified human (Homo sapien or Hs) 5'-MMR excision reaction requires the HsMSH2-HsMSH6 heterodimer, the 5' → 3' exonuclease HsEXOI, and the single-stranded binding heterotrimer HsRPA. The HsMLH1-HsPMS2 heterodimer substantially influences 5'-MMR excision in cell extracts but is not required in the purified system. Using real-time single-molecule imaging, we show that HsRPA or Escherichia coli EcSSB restricts HsEXOI excision activity on nicked or gapped DNA. HsMSH2-HsMSH6 activates HsEXOI by overcoming HsRPA/EcSSB inhibition and exploits multiple dynamic sliding clamps to increase tract length. Conversely, HsMLH1-HsPMS2 regulates tract length by controlling the number of excision complexes, providing a link to 5' MMR.


Assuntos
Pareamento Incorreto de Bases , Reparo do DNA , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenosina Trifosfatases/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Dimerização , Humanos , Endonuclease PMS2 de Reparo de Erro de Pareamento , Proteína 1 Homóloga a MutL , Proteínas Nucleares/metabolismo
7.
Sci Rep ; 5: 16883, 2015 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-26582263

RESUMO

Fluorophore labeling of proteins while preserving native functions is essential for bulk Förster resonance energy transfer (FRET) interaction and single molecule imaging analysis. Here we describe a versatile, efficient, specific, irreversible, gentle and low-cost method for labeling proteins with fluorophores that appears substantially more robust than a similar but chemically distinct procedure. The method employs the controlled enzymatic conversion of a central Cys to a reactive formylglycine (fGly) aldehyde within a six amino acid Formylglycine Generating Enzyme (FGE) recognition sequence in vitro. The fluorophore is then irreversibly linked to the fGly residue using a Hydrazinyl-Iso-Pictet-Spengler (HIPS) ligation reaction. We demonstrate the robust large-scale fluorophore labeling and purification of E.coli (Ec) mismatch repair (MMR) components. Fluorophore labeling did not alter the native functions of these MMR proteins in vitro or in singulo. Because the FGE recognition sequence is easily portable, FGE-HIPS fluorophore-labeling may be easily extended to other proteins.


Assuntos
Bioquímica/métodos , Corantes Fluorescentes/metabolismo , Coloração e Rotulagem , Trifosfato de Adenosina/metabolismo , DNA/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Corantes Fluorescentes/química , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo
9.
PLoS One ; 9(7): e103164, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25051054

RESUMO

Host base excision repair (BER) proteins that repair oxidative damage enhance HIV infection. These proteins include the oxidative DNA damage glycosylases 8-oxo-guanine DNA glycosylase (OGG1) and mutY homolog (MYH) as well as DNA polymerase beta (Polß). While deletion of oxidative BER genes leads to decreased HIV infection and integration efficiency, the mechanism remains unknown. One hypothesis is that BER proteins repair the DNA gapped integration intermediate. An alternative hypothesis considers that the most common oxidative DNA base damages occur on guanines. The subtle consensus sequence preference at HIV integration sites includes multiple G:C base pairs surrounding the points of joining. These observations suggest a role for oxidative BER during integration targeting at the nucleotide level. We examined the hypothesis that BER repairs a gapped integration intermediate by measuring HIV infection efficiency in Polß null cell lines complemented with active site point mutants of Polß. A DNA synthesis defective mutant, but not a 5'dRP lyase mutant, rescued HIV infection efficiency to wild type levels; this suggested Polß DNA synthesis activity is not necessary while 5'dRP lyase activity is required for efficient HIV infection. An alternate hypothesis that BER events in the host genome influence HIV integration site selection was examined by sequencing integration sites in OGG1 and MYH null cells. In the absence of these 8-oxo-guanine specific glycosylases the chromatin elements of HIV integration site selection remain the same as in wild type cells. However, the HIV integration site sequence preference at G:C base pairs is altered at several positions in OGG1 and MYH null cells. Inefficient HIV infection in the absence of oxidative BER proteins does not appear related to repair of the gapped integration intermediate; instead oxidative damage repair may participate in HIV integration site preference at the sequence level.


Assuntos
Dano ao DNA , Infecções por HIV/genética , Infecções por HIV/fisiopatologia , HIV/fisiologia , Estresse Oxidativo , Internalização do Vírus , Animais , Sequência de Bases , DNA Polimerase beta/genética , DNA Polimerase beta/metabolismo , Interações Hospedeiro-Parasita , Humanos , Camundongos , Dados de Sequência Molecular
10.
Structure ; 20(7): 1264-1274, 2012 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-22682745

RESUMO

The mismatch repair (MMR) initiation protein MutS forms at least two types of sliding clamps on DNA: a transient mismatch searching clamp (∼1 s) and an unusually stable (∼600 s) ATP-bound clamp that recruits downstream MMR components. Remarkably, direct visualization of single MutS particles on mismatched DNA has not been reported. We have combined real-time particle tracking with fluorescence resonance energy transfer (FRET) to image MutS diffusion dynamics on DNA containing a single mismatch. We show searching MutS rotates during diffusion independent of ionic strength or flow rate, suggesting continuous contact with the DNA backbone. In contrast, ATP-bound MutS clamps that are visually and successively released from the mismatch spin freely around the DNA, and their diffusion is affected by ionic strength and flow rate. These observations show that ATP binding alters the MutS diffusion mechanics on DNA, which has a number of implications for the mechanism of MMR.


Assuntos
Trifosfato de Adenosina/química , Proteínas de Bactérias/química , DNA/química , Proteína MutS de Ligação de DNA com Erro de Pareamento/química , Thermus/química , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Pareamento Incorreto de Bases , DNA/metabolismo , Reparo de Erro de Pareamento de DNA , Difusão , Dimerização , Polarização de Fluorescência , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes , Cinética , Proteína MutS de Ligação de DNA com Erro de Pareamento/genética , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Thermus/enzimologia , Thermus/genética
11.
Phys Rev E Stat Nonlin Soft Matter Phys ; 76(1 Pt 1): 011909, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17677496

RESUMO

We present single-molecule measurements of the opening rate of DNA hairpins under mechanical tension and compare with the results obtained from a reduced-degrees-of-freedom statistical mechanics model. We extract the apparent position of the transition state s and find that the model, with no fitting parameters, reproduces the experimental measurements surprisingly well. Our values for s are different from the ones obtained in previous experiments, where, however, the experimental conditions were different (different force fields, different salt concentrations). Thus it appears that the values of s measured for relatively short hairpins are strongly affected by these experimental conditions.


Assuntos
DNA/química , DNA/ultraestrutura , Modelos Químicos , Modelos Moleculares , Pinças Ópticas , Simulação por Computador , Elasticidade , Conformação de Ácido Nucleico , Estresse Mecânico
12.
Phys Rev Lett ; 94(11): 118101, 2005 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-15903892

RESUMO

We report on a single-molecule experiment where we directly observe local bending of a 76 base pair DNA oligomer caused by specific binding of a single integration-host-factor (IHF) protein. The conformational change of the DNA is detected by optically monitoring the displacement of a micron size bead tethered to a surface by the DNA. Since in the bound state the DNA loops around the IHF, a mechanical tension on the DNA tends to eject the protein. We measure how the rate for the protein to fall off the DNA depends on the mechanical tension in the DNA, gaining insight into the energy landscape for this molecular bond. Our method further demonstrates a new paradigm of molecular detection, where ligand binding is detected through the conformational change induced in the probe molecule. Here this allows the detection of single, unlabeled proteins.


Assuntos
DNA/química , Fatores Hospedeiros de Integração/química , Fenômenos Químicos , Físico-Química , DNA/metabolismo , Fatores Hospedeiros de Integração/metabolismo , Conformação de Ácido Nucleico
13.
Biophys J ; 83(4): 2211-8, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12324438

RESUMO

Globular proteins are peculiar solids that display both local stability of their conformation and the ability to undergo large cooperative changes of shape (conformational changes). If one forces a large deformation of the molecule, such that the structure is necessarily changed, it is not obvious whether the deformed globule can still remain a solid or whether it will melt. Is it possible to plastically deform a protein? Here we investigate this question with a micro-mechanical experiment on a small region (approximately 10 molecules) of a protein monolayer adsorbed on a rigid surface. For the two proteins studied, albumin and myoglobin, we observed that the molecules can be substantially deformed (approximately 1-2 nm deformation) by comparatively small stresses applied for sufficiently long times. The deformation is irreversible, and the protein remains in the solid state (i.e., displays a nonzero shear modulus). The dynamics of the deformation is approximately logarithmic in time, similar to creep in solids. These results show that globular proteins adsorbed on a surface can be plastically deformed.


Assuntos
Plásticos/farmacologia , Conformação Proteica , Desnaturação Proteica , Proteínas/química , Animais , Fenômenos Biofísicos , Biofísica , Bovinos , Dissulfetos/química , Cavalos , Mioglobina/química , Albumina Sérica/química , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...