Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Am J Hum Genet ; 106(1): 41-57, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31866047

RESUMO

Unexplained infertility affects 2%-3% of reproductive-aged couples. One approach to identifying genes involved in infertility is to study subjects with this clinical phenotype and a de novo balanced chromosomal aberration (BCA). While BCAs may reduce fertility by production of unbalanced gametes, a chromosomal rearrangement may also disrupt or dysregulate genes important in fertility. One such subject, DGAP230, has severe oligozoospermia and 46,XY,t(20;22)(q13.3;q11.2). We identified exclusive overexpression of SYCP2 from the der(20) allele that is hypothesized to result from enhancer adoption. Modeling the dysregulation in budding yeast resulted in disrupted structural integrity of the synaptonemal complex, a common cause of defective spermatogenesis in mammals. Exome sequencing of infertile males revealed three heterozygous SYCP2 frameshift variants in additional subjects with cryptozoospermia and azoospermia. In sum, this investigation illustrates the power of precision cytogenetics for annotation of the infertile genome, suggests that these mechanisms should be considered as an alternative etiology to that of segregation of unbalanced gametes in infertile men harboring a BCA, and provides evidence of SYCP2-mediated male infertility in humans.


Assuntos
Proteínas de Ciclo Celular/genética , Aberrações Cromossômicas , Proteínas de Ligação a DNA/genética , Mutação da Fase de Leitura , Infertilidade Masculina/etiologia , Oligospermia/etiologia , Adulto , Feminino , Humanos , Infertilidade Masculina/patologia , Cariotipagem , Masculino , Oligospermia/patologia , Linhagem , Fenótipo , Translocação Genética
2.
Cell ; 172(5): 897-909.e21, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29474918

RESUMO

X-linked Dystonia-Parkinsonism (XDP) is a Mendelian neurodegenerative disease that is endemic to the Philippines and is associated with a founder haplotype. We integrated multiple genome and transcriptome assembly technologies to narrow the causal mutation to the TAF1 locus, which included a SINE-VNTR-Alu (SVA) retrotransposition into intron 32 of the gene. Transcriptome analyses identified decreased expression of the canonical cTAF1 transcript among XDP probands, and de novo assembly across multiple pluripotent stem-cell-derived neuronal lineages discovered aberrant TAF1 transcription that involved alternative splicing and intron retention (IR) in proximity to the SVA that was anti-correlated with overall TAF1 expression. CRISPR/Cas9 excision of the SVA rescued this XDP-specific transcriptional signature and normalized TAF1 expression in probands. These data suggest an SVA-mediated aberrant transcriptional mechanism associated with XDP and may provide a roadmap for layered technologies and integrated assembly-based analyses for other unsolved Mendelian disorders.


Assuntos
Distúrbios Distônicos/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Genoma Humano , Transcriptoma/genética , Processamento Alternativo/genética , Elementos Alu/genética , Sequência de Bases , Sistemas CRISPR-Cas/genética , Estudos de Coortes , Família , Feminino , Loci Gênicos , Haplótipos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Íntrons/genética , Masculino , Repetições Minissatélites/genética , Modelos Genéticos , Degeneração Neural/genética , Degeneração Neural/patologia , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Elementos Nucleotídeos Curtos e Dispersos , Fatores Associados à Proteína de Ligação a TATA/genética , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fator de Transcrição TFIID/genética , Fator de Transcrição TFIID/metabolismo
3.
Genome Biol ; 18(1): 36, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28260531

RESUMO

BACKGROUND: Structural variation (SV) influences genome organization and contributes to human disease. However, the complete mutational spectrum of SV has not been routinely captured in disease association studies. RESULTS: We sequenced 689 participants with autism spectrum disorder (ASD) and other developmental abnormalities to construct a genome-wide map of large SV. Using long-insert jumping libraries at 105X mean physical coverage and linked-read whole-genome sequencing from 10X Genomics, we document seven major SV classes at ~5 kb SV resolution. Our results encompass 11,735 distinct large SV sites, 38.1% of which are novel and 16.8% of which are balanced or complex. We characterize 16 recurrent subclasses of complex SV (cxSV), revealing that: (1) cxSV are larger and rarer than canonical SV; (2) each genome harbors 14 large cxSV on average; (3) 84.4% of large cxSVs involve inversion; and (4) most large cxSV (93.8%) have not been delineated in previous studies. Rare SVs are more likely to disrupt coding and regulatory non-coding loci, particularly when truncating constrained and disease-associated genes. We also identify multiple cases of catastrophic chromosomal rearrangements known as chromoanagenesis, including somatic chromoanasynthesis, and extreme balanced germline chromothripsis events involving up to 65 breakpoints and 60.6 Mb across four chromosomes, further defining rare categories of extreme cxSV. CONCLUSIONS: These data provide a foundational map of large SV in the morbid human genome and demonstrate a previously underappreciated abundance and diversity of cxSV that should be considered in genomic studies of human disease.


Assuntos
Aberrações Cromossômicas , Inversão Cromossômica , Cromotripsia , Genoma Humano , Genômica , Transtorno do Espectro Autista/genética , Ordem dos Genes , Rearranjo Gênico , Predisposição Genética para Doença , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação
4.
Sci Rep ; 7: 41120, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-28120936

RESUMO

Integration of exogenous DNA into a host genome represents an important route to generate animal and cellular models for exploration into human disease and therapeutic development. In most models, little is known concerning structural integrity of the transgene, precise site of integration, or its impact on the host genome. We previously used whole-genome and targeted sequencing approaches to reconstruct transgene structure and integration sites in models of Huntington's disease, revealing complex structural rearrangements that can result from transgenesis. Here, we demonstrate in the R6/2 mouse, a widely used Huntington's disease model, that integration of a rearranged transgene with coincident deletion of 5,444 bp of host genome within the gene Gm12695 has striking molecular consequences. Gm12695, the function of which is unknown, is normally expressed at negligible levels in mouse brain, but transgene integration has resulted in cortical expression of a partial fragment (exons 8-11) 3' to the transgene integration site in R6/2. This transcript shows significant expression among the extensive network of differentially expressed genes associated with this model, including synaptic transmission, cell signalling and transcription. These data illustrate the value of sequence-level resolution of transgene insertions and transcription analysis to inform phenotypic characterization of transgenic models utilized in therapeutic research.


Assuntos
Modelos Animais de Doenças , Doença de Huntington/patologia , Camundongos Transgênicos , Animais , Perfilação da Expressão Gênica , Rearranjo Gênico , Humanos , Camundongos , Análise de Sequência de DNA , Deleção de Sequência
5.
Am J Med Genet A ; 173(2): 395-406, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27759917

RESUMO

We performed whole-genome sequencing on an individual from a family with variable psychiatric phenotypes that had a sensory processing disorder, apraxia, and autism. The proband harbored a maternally inherited balanced translocation (46,XY,t(11;14)(p12;p12)mat) that disrupted LRRC4C, a member of the highly specialized netrin G family of axon guidance molecules. The proband also inherited a paternally derived chromosomal inversion that disrupted DPP6, a potassium channel interacting protein. Copy Number (CN) analysis in 14,077 cases with neurodevelopmental disorders and 8,960 control subjects revealed that 60% of cases with exonic deletions in LRRC4C had a second clinically recognizable syndrome associated with variable clinical phenotypes, including 16p11.2, 1q44, and 2q33.1 CN syndromes, suggesting LRRC4C deletion variants may be modifiers of neurodevelopmental disorders. In vitro, functional assessments modeling patient deletions in LRRC4C suggest a negative regulatory role of these exons found in the untranslated region of LRRC4C, which has a single, terminal coding exon. These data suggest that the proband's autism may be due to the inheritance of disruptions in both DPP6 and LRRC4C, and may highlight the importance of the netrin G family and potassium channel interacting molecules in neurodevelopmental disorders. © 2016 Wiley Periodicals, Inc.


Assuntos
Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Estudos de Associação Genética , Proteínas do Tecido Nervoso/genética , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Canais de Potássio/genética , Receptores de Superfície Celular/genética , Regiões 5' não Traduzidas , Adolescente , Adulto , Apraxias/diagnóstico , Apraxias/genética , Transtorno Autístico/diagnóstico , Transtorno Autístico/genética , Criança , Pré-Escolar , Pontos de Quebra do Cromossomo , Inversão Cromossômica , Hibridização Genômica Comparativa , Variações do Número de Cópias de DNA , Feminino , Expressão Gênica , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Cariótipo , Masculino , Pessoa de Meia-Idade , Família Multigênica , Linhagem , Translocação Genética , Adulto Jovem
6.
Nat Genet ; 49(1): 36-45, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27841880

RESUMO

Despite the clinical significance of balanced chromosomal abnormalities (BCAs), their characterization has largely been restricted to cytogenetic resolution. We explored the landscape of BCAs at nucleotide resolution in 273 subjects with a spectrum of congenital anomalies. Whole-genome sequencing revised 93% of karyotypes and demonstrated complexity that was cryptic to karyotyping in 21% of BCAs, highlighting the limitations of conventional cytogenetic approaches. At least 33.9% of BCAs resulted in gene disruption that likely contributed to the developmental phenotype, 5.2% were associated with pathogenic genomic imbalances, and 7.3% disrupted topologically associated domains (TADs) encompassing known syndromic loci. Remarkably, BCA breakpoints in eight subjects altered a single TAD encompassing MEF2C, a known driver of 5q14.3 microdeletion syndrome, resulting in decreased MEF2C expression. We propose that sequence-level resolution dramatically improves prediction of clinical outcomes for balanced rearrangements and provides insight into new pathogenic mechanisms, such as altered regulation due to changes in chromosome topology.


Assuntos
Aberrações Cromossômicas , Anormalidades Congênitas/genética , Rearranjo Gênico , Marcadores Genéticos/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Feminino , Humanos , Masculino
7.
Am J Hum Genet ; 99(5): 1015-1033, 2016 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-27745839

RESUMO

In this exciting era of "next-gen cytogenetics," integrating genomic sequencing into the prenatal diagnostic setting is possible within an actionable time frame and can provide precise delineation of balanced chromosomal rearrangements at the nucleotide level. Given the increased risk of congenital abnormalities in newborns with de novo balanced chromosomal rearrangements, comprehensive interpretation of breakpoints could substantially improve prediction of phenotypic outcomes and support perinatal medical care. Herein, we present and evaluate sequencing results of balanced chromosomal rearrangements in ten prenatal subjects with respect to the location of regulatory chromatin domains (topologically associated domains [TADs]). The genomic material from all subjects was interpreted to be "normal" by microarray analyses, and their rearrangements would not have been detected by cell-free DNA (cfDNA) screening. The findings of our systematic approach correlate with phenotypes of both pregnancies with untoward outcomes (5/10) and with healthy newborns (3/10). Two pregnancies, one with a chromosomal aberration predicted to be of unknown clinical significance and another one predicted to be likely benign, were terminated prior to phenotype-genotype correlation (2/10). We demonstrate that the clinical interpretation of structural rearrangements should not be limited to interruption, deletion, or duplication of specific genes and should also incorporate regulatory domains of the human genome with critical ramifications for the control of gene expression. As detailed in this study, our molecular approach to both detecting and interpreting the breakpoints of structural rearrangements yields unparalleled information in comparison to other commonly used first-tier diagnostic methods, such as non-invasive cfDNA screening and microarray analysis, to provide improved genetic counseling for phenotypic outcome in the prenatal setting.


Assuntos
Aberrações Cromossômicas , Anormalidades Congênitas/genética , Rearranjo Gênico , Nucleotídeos/genética , Diagnóstico Pré-Natal/métodos , Alelos , Mapeamento Cromossômico , Anormalidades Congênitas/diagnóstico , Feminino , Regulação da Expressão Gênica , Testes Genéticos , Genoma Humano , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Cariotipagem , Masculino , Gravidez , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Análise de Sequência de DNA , Translocação Genética
8.
Eur J Hum Genet ; 24(11): 1622-1626, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27381092

RESUMO

Analysis of chromosomal rearrangements has been highly successful in identifying genes involved in many congenital abnormalities including hearing loss. Herein, we report a subject, designated DGAP242, with congenital hearing loss (HL) and a de novo balanced translocation 46,XX,t(1;5)(q32;q15)dn. Using multiple next-generation sequencing techniques, we obtained high resolution of the breakpoints. This revealed disruption of the orphan receptor ESRRG on chromosome 1, which is differentially expressed in inner ear hair cells and has previously been implicated in HL, and disruption of KIAA0825 on chromosome 5. Given the translocation breakpoints and supporting literature, disruption of ESRRG is the most likely cause for DGAP242's phenotype and implicates ESRRG in a monogenic form of congenital HL, although a putative contributory role for KIAA0825 in the subject's disorder cannot be excluded.


Assuntos
Deficiências do Desenvolvimento/genética , Perda Auditiva/genética , Fenótipo , Receptores de Estrogênio/genética , Adulto , Linhagem Celular Tumoral , Pontos de Quebra do Cromossomo , Cromossomos Humanos Par 1/genética , Cromossomos Humanos Par 5/genética , Deficiências do Desenvolvimento/diagnóstico , Feminino , Perda Auditiva/diagnóstico , Humanos , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Linhagem , Síndrome , Translocação Genética
9.
Am J Hum Genet ; 97(1): 170-6, 2015 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-26094575

RESUMO

Copy-number variants (CNVs) have been the predominant focus of genetic studies of structural variation, and chromosomal microarray (CMA) for genome-wide CNV detection is the recommended first-tier genetic diagnostic screen in neurodevelopmental disorders. We compared CNVs observed by CMA to the structural variation detected by whole-genome large-insert sequencing in 259 individuals diagnosed with autism spectrum disorder (ASD) from the Simons Simplex Collection. These analyses revealed a diverse landscape of complex duplications in the human genome. One remarkably common class of complex rearrangement, which we term dupINVdup, involves two closely located duplications ("paired duplications") that flank the breakpoints of an inversion. This complex variant class is cryptic to CMA, but we observed it in 8.1% of all subjects. We also detected other paired-duplication signatures and duplication-mediated complex rearrangements in 15.8% of all ASD subjects. Breakpoint analysis showed that the predominant mechanism of formation of these complex duplication-associated variants was microhomology-mediated repair. On the basis of the striking prevalence of dupINVdups in this cohort, we explored the landscape of all inversion variation among the 235 highest-quality libraries and found abundant complexity among these variants: only 39.3% of inversions were canonical, or simple, inversions without additional rearrangement. Collectively, these findings indicate that dupINVdups, as well as other complex duplication-associated rearrangements, represent relatively common sources of genomic variation that is cryptic to population-based microarray and low-depth whole-genome sequencing. They also suggest that paired-duplication signatures detected by CMA warrant further scrutiny in genetic diagnostic testing given that they might mark complex rearrangements of potential clinical relevance.


Assuntos
Transtornos Globais do Desenvolvimento Infantil/genética , Inversão Cromossômica/genética , Variações do Número de Cópias de DNA/genética , Marcadores Genéticos/genética , Duplicações Segmentares Genômicas/genética , Estudos de Coortes , Reparo do DNA/genética , Biblioteca Gênica , Humanos
10.
Am J Hum Genet ; 95(4): 454-61, 2014 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-25279985

RESUMO

Structural variation (SV) is a significant component of the genetic etiology of both neurodevelopmental and psychiatric disorders; however, routine guidelines for clinical genetic screening have been established only in the former category. Genome-wide chromosomal microarray (CMA) can detect genomic imbalances such as copy-number variants (CNVs), but balanced chromosomal abnormalities (BCAs) still require karyotyping for clinical detection. Moreover, submicroscopic BCAs and subarray threshold CNVs are intractable, or cryptic, to both CMA and karyotyping. Here, we performed whole-genome sequencing using large-insert jumping libraries to delineate both cytogenetically visible and cryptic SVs in a single test among 30 clinically referred youth representing a range of severe neuropsychiatric conditions. We detected 96 SVs per person on average that passed filtering criteria above our highest-confidence resolution (6,305 bp) and an additional 111 SVs per genome below this resolution. These SVs rearranged 3.8 Mb of genomic sequence and resulted in 42 putative loss-of-function (LoF) or gain-of-function mutations per person. We estimate that 80% of the LoF variants were cryptic to clinical CMA. We found myriad complex and cryptic rearrangements, including a "paired" duplication (360 kb, 169 kb) that flanks a 5.25 Mb inversion that appears in 7 additional cases from clinical CNV data among 47,562 individuals. Following convergent genomic profiling of these independent clinical CNV data, we interpreted three SVs to be of potential clinical significance. These data indicate that sequence-based delineation of the full SV mutational spectrum warrants exploration in youth referred for neuropsychiatric evaluation and clinical diagnostic SV screening more broadly.


Assuntos
Idade de Início , Aberrações Cromossômicas , Cromossomos Humanos/genética , Variações do Número de Cópias de DNA/genética , Transtornos Mentais/genética , Doenças Neurodegenerativas/genética , Hibridização Genômica Comparativa , Genoma Humano , Humanos , Transtornos Mentais/epidemiologia , Análise em Microsséries , Doenças Neurodegenerativas/epidemiologia , Fenótipo , Estados Unidos/epidemiologia
11.
Hum Genet ; 132(5): 537-52, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23354975

RESUMO

We describe a female subject (DGAP100) with a 46,X,t(X;5)(p11.3;q35.3)inv(5)(q35.3q35.1)dn, severe psychomotor retardation with hypotonia, global postnatal growth restriction, microcephaly, globally reduced cerebral volume, seizures, facial dysmorphia and cleft palate. Fluorescence in situ hybridization and whole-genome sequencing demonstrated that the X chromosome breakpoint disrupts KDM6A in the second intron. No genes were directly disrupted on chromosome 5. KDM6A is a histone 3 lysine 27 demethylase and a histone 3 lysine 4 methyltransferase. Expression of KDM6A is significantly reduced in DGAP100 lymphoblastoid cells compared to control samples. We identified nine additional cases with neurodevelopmental delay and various other features consistent with the DGAP100 phenotype with copy number variation encompassing KDM6A from microarray databases. We evaluated haploinsufficiency of kdm6a in a zebrafish model. kdm6a is expressed in the pharyngeal arches and ethmoid plate of the developing zebrafish, while a kdm6a morpholino knockdown exhibited craniofacial defects. We conclude KDM6A dosage regulation is associated with severe and diverse structural defects and developmental abnormalities.


Assuntos
Anormalidades Múltiplas/genética , Cromossomos Humanos Par 5 , Haploinsuficiência/genética , Histona Desmetilases/genética , Proteínas Nucleares/genética , Cromossomo X , Animais , Região Branquial/enzimologia , Linhagem Celular , Cromossomos Humanos Par 5/genética , Fissura Palatina/genética , Hibridização Genômica Comparativa , Variações do Número de Cópias de DNA , Feminino , Técnicas de Silenciamento de Genes , Histona Desmetilases/metabolismo , Humanos , Deficiência Intelectual/genética , Cariotipagem , Microcefalia/genética , Hipotonia Muscular/genética , Proteínas Nucleares/metabolismo , Fenótipo , Transtornos Psicomotores/genética , Convulsões/genética , Translocação Genética , Cromossomo X/genética , Adulto Jovem , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
12.
N Engl J Med ; 367(23): 2226-32, 2012 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-23215558

RESUMO

Conventional cytogenetic testing offers low-resolution detection of balanced karyotypic abnormalities but cannot provide the precise, gene-level knowledge required to predict outcomes. The use of high-resolution whole-genome deep sequencing is currently impractical for the purpose of routine clinical care. We show here that whole-genome "jumping libraries" can offer an immediately applicable, nucleotide-level complement to conventional genetic diagnostics within a time frame that allows for clinical action. We performed large-insert sequencing of DNA extracted from amniotic-fluid cells with a balanced de novo translocation. The amniotic-fluid sample was from a patient in the third trimester of pregnancy who underwent amniocentesis because of severe polyhydramnios after multiple fetal anomalies had been detected on ultrasonography. Using a 13-day sequence and analysis pipeline, we discovered direct disruption of CHD7, a causal locus in the CHARGE syndrome (coloboma of the eye, heart anomaly, atresia of the choanae, retardation, and genital and ear anomalies). Clinical findings at birth were consistent with the CHARGE syndrome, a diagnosis that could not have been reliably inferred from the cytogenetic breakpoint. This case study illustrates the potential power of customized whole-genome jumping libraries when used to augment prenatal karyotyping.


Assuntos
Síndrome CHARGE/genética , Transtornos Cromossômicos/diagnóstico , Testes Genéticos/métodos , Biblioteca Genômica , Cardiopatias Congênitas/genética , Análise de Sequência com Séries de Oligonucleotídeos , Diagnóstico Pré-Natal/métodos , Adulto , Síndrome CHARGE/diagnóstico , Aberrações Cromossômicas , Feminino , Doenças Fetais/diagnóstico , Genoma Humano , Cardiopatias Congênitas/diagnóstico por imagem , Humanos , Cariótipo , Mutação , Gravidez , Translocação Genética , Ultrassonografia Pré-Natal
13.
Am J Hum Genet ; 91(6): 1128-34, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23217328

RESUMO

Large intergenic noncoding (linc) RNAs represent a newly described class of ribonucleic acid whose importance in human disease remains undefined. We identified a severely developmentally delayed 16-year-old female with karyotype 46,XX,t(2;11)(p25.1;p15.1)dn in the absence of clinically significant copy number variants (CNVs). DNA capture followed by next-generation sequencing of the translocation breakpoints revealed disruption of a single noncoding gene on chromosome 2, LINC00299, whose RNA product is expressed in all tissues measured, but most abundantly in brain. Among a series of additional, unrelated subjects referred for clinical diagnostic testing who showed CNV affecting this locus, we identified four with exon-crossing deletions in association with neurodevelopmental abnormalities. No disruption of the LINC00299 coding sequence was seen in almost 14,000 control subjects. Together, these subjects with disruption of LINC00299 implicate this particular noncoding RNA in brain development and raise the possibility that, as a class, abnormalities of lincRNAs may play a significant role in human developmental disorders.


Assuntos
Deficiências do Desenvolvimento/genética , Mutação , RNA Longo não Codificante/genética , Adolescente , Processamento Alternativo , Sequência de Bases , Pontos de Quebra do Cromossomo , Cromossomos Humanos Par 11 , Cromossomos Humanos Par 2 , Feminino , Ordem dos Genes , Humanos , Linfócitos/metabolismo , Dados de Sequência Molecular , Células-Tronco Neurais/metabolismo , Translocação Genética
14.
Cell ; 149(3): 525-37, 2012 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-22521361

RESUMO

Balanced chromosomal abnormalities (BCAs) represent a relatively untapped reservoir of single-gene disruptions in neurodevelopmental disorders (NDDs). We sequenced BCAs in patients with autism or related NDDs, revealing disruption of 33 loci in four general categories: (1) genes previously associated with abnormal neurodevelopment (e.g., AUTS2, FOXP1, and CDKL5), (2) single-gene contributors to microdeletion syndromes (MBD5, SATB2, EHMT1, and SNURF-SNRPN), (3) novel risk loci (e.g., CHD8, KIRREL3, and ZNF507), and (4) genes associated with later-onset psychiatric disorders (e.g., TCF4, ZNF804A, PDE10A, GRIN2B, and ANK3). We also discovered among neurodevelopmental cases a profoundly increased burden of copy-number variants from these 33 loci and a significant enrichment of polygenic risk alleles from genome-wide association studies of autism and schizophrenia. Our findings suggest a polygenic risk model of autism and reveal that some neurodevelopmental genes are sensitive to perturbation by multiple mutational mechanisms, leading to variable phenotypic outcomes that manifest at different life stages.


Assuntos
Transtornos Globais do Desenvolvimento Infantil/genética , Aberrações Cromossômicas , Transtorno Autístico/diagnóstico , Transtorno Autístico/genética , Criança , Transtornos Globais do Desenvolvimento Infantil/diagnóstico , Quebra Cromossômica , Deleção Cromossômica , Variações do Número de Cópias de DNA , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Sistema Nervoso/crescimento & desenvolvimento , Esquizofrenia/genética , Análise de Sequência de DNA , Transdução de Sinais
15.
Nat Genet ; 44(4): 390-7, S1, 2012 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-22388000

RESUMO

We defined the genetic landscape of balanced chromosomal rearrangements at nucleotide resolution by sequencing 141 breakpoints from cytogenetically interpreted translocations and inversions. We confirm that the recently described phenomenon of 'chromothripsis' (massive chromosomal shattering and reorganization) is not unique to cancer cells but also occurs in the germline, where it can resolve to a relatively balanced state with frequent inversions. We detected a high incidence of complex rearrangements (19.2%) and substantially less reliance on microhomology (31%) than previously observed in benign copy-number variants (CNVs). We compared these results to experimentally generated DNA breakage-repair by sequencing seven transgenic animals, revealing extensive rearrangement of the transgene and host genome with similar complexity to human germline alterations. Inversion was the most common rearrangement, suggesting that a combined mechanism involving template switching and non-homologous repair mediates the formation of balanced complex rearrangements that are viable, stably replicated and transmitted unaltered to subsequent generations.


Assuntos
Quebra Cromossômica , Reparo do DNA por Junção de Extremidades/genética , Rearranjo Gênico , Mutação em Linhagem Germinativa , Animais , Animais Geneticamente Modificados , Inversão Cromossômica , Humanos , Dados de Sequência Molecular , Neoplasias/genética , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Sequência de DNA , Translocação Genética
16.
Am J Hum Genet ; 89(4): 551-63, 2011 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-21981781

RESUMO

Persons with neurodevelopmental disorders or autism spectrum disorder (ASD) often harbor chromosomal microdeletions, yet the individual genetic contributors within these regions have not been systematically evaluated. We established a consortium of clinical diagnostic and research laboratories to accumulate a large cohort with genetic alterations of chromosomal region 2q23.1 and acquired 65 subjects with microdeletion or translocation. We sequenced translocation breakpoints; aligned microdeletions to determine the critical region; assessed effects on mRNA expression; and examined medical records, photos, and clinical evaluations. We identified a single gene, methyl-CpG-binding domain 5 (MBD5), as the only locus that defined the critical region. Partial or complete deletion of MBD5 was associated with haploinsufficiency of mRNA expression, intellectual disability, epilepsy, and autistic features. Fourteen alterations, including partial deletions of noncoding regions not typically captured or considered pathogenic by current diagnostic screening, disrupted MBD5 alone. Expression profiles and clinical characteristics were largely indistinguishable between MBD5-specific alteration and deletion of the entire 2q23.1 interval. No copy-number alterations of MBD5 were observed in 7878 controls, suggesting MBD5 alterations are highly penetrant. We surveyed MBD5 coding variations among 747 ASD subjects compared to 2043 non-ASD subjects analyzed by whole-exome sequencing and detected an association with a highly conserved methyl-CpG-binding domain missense variant, p.79Gly>Glu (c.236G>A) (p = 0.012). These results suggest that genetic alterations of MBD5 cause features of 2q23.1 microdeletion syndrome and that this epigenetic regulator significantly contributes to ASD risk, warranting further consideration in research and clinical diagnostic screening and highlighting the importance of chromatin remodeling in the etiology of these complex disorders.


Assuntos
Transtornos Globais do Desenvolvimento Infantil/genética , Cromossomos Humanos Par 2 , Proteínas de Ligação a DNA/genética , Epilepsia/genética , Deleção de Genes , Deficiência Intelectual/genética , Adolescente , Adulto , Estudos de Casos e Controles , Criança , Pré-Escolar , Ilhas de CpG , Epigênese Genética , Feminino , Humanos , Masculino , Fenótipo , Síndrome
17.
Am J Hum Genet ; 88(4): 469-81, 2011 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-21473983

RESUMO

The contribution of balanced chromosomal rearrangements to complex disorders remains unclear because they are not detected routinely by genome-wide microarrays and clinical localization is imprecise. Failure to consider these events bypasses a potentially powerful complement to single nucleotide polymorphism and copy-number association approaches to complex disorders, where much of the heritability remains unexplained. To capitalize on this genetic resource, we have applied optimized sequencing and analysis strategies to test whether these potentially high-impact variants can be mapped at reasonable cost and throughput. By using a whole-genome multiplexing strategy, rearrangement breakpoints could be delineated at a fraction of the cost of standard sequencing. For rearrangements already mapped regionally by karyotyping and fluorescence in situ hybridization, a targeted approach enabled capture and sequencing of multiple breakpoints simultaneously. Importantly, this strategy permitted capture and unique alignment of up to 97% of repeat-masked sequences in the targeted regions. Genome-wide analyses estimate that only 3.7% of bases should be routinely omitted from genomic DNA capture experiments. Illustrating the power of these approaches, the rearrangement breakpoints were rapidly defined to base pair resolution and revealed unexpected sequence complexity, such as co-occurrence of inversion and translocation as an underlying feature of karyotypically balanced alterations. These findings have implications ranging from genome annotation to de novo assemblies and could enable sequencing screens for structural variations at a cost comparable to that of microarrays in standard clinical practice.


Assuntos
Cromossomos Humanos/genética , Rearranjo Gênico , Análise de Sequência de DNA/métodos , Inversão Cromossômica , Biologia Computacional , Código de Barras de DNA Taxonômico , Quebras de DNA , Feminino , Biblioteca Gênica , Genoma Humano , Estudo de Associação Genômica Ampla , Humanos , Sequências Repetitivas Dispersas , Cariotipagem , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Translocação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...