Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
3.
Biomed Pharmacother ; 170: 115971, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38039760

RESUMO

Activated microglial cells in the central nervous system (CNS) are the main contributors to neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease. Inhibiting their activation will help in reducing inflammation and oxidative stress during pathogenesis, potentially limiting the progression of the diseases. The immunomodulation properties of dental pulp-derived stem cells (DPSC) make it a promising therapy for neurodegenerative disorders. This study aims to determine whether secretory factors of DPSC (DPSC℗) inhibit inflammation and proliferation of microglial cells and define the molecular mechanisms. Our quantitative RT-PCR analysis showed that the DPSC℗ reduced the markers of the inflammation and induced anti-inflammatory molecules in microglial cells. DPSC ℗ reduced the intracellular and mitochondrial reactive oxygen species (ROS) production and mitochondrial membrane potential in microglial cells. In addition, DPSC ℗ decreased the cellular bioenergetics parameters related to oxygen consumption rate (OCAR) and extracellular acidification rate (ECAR). We found that DPSC℗ inhibited microglial cell proliferation by activating a checkpoint molecule, Chk1 leading an arrest at the G1 phase of the cell cycle. To define the mechanism, we performed the western blot analysis and observed that the MAPK P38 pathway was inhibited by DPSC℗. Furthermore, a System biology analysis revealed that the BDNF and GDNF, secretory factors of DPSC, blocked at the phosphorylation site (Tyr 182) of the P38 molecule resulting in the inhibition of downstream signaling of inflammation. These data suggest that the DPSC℗ may be a potential therapeutic agent for neurodegenerative diseases.


Assuntos
Microglia , Doenças Neurodegenerativas , Humanos , Transdução de Sinais , Células-Tronco/metabolismo , Inflamação/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo
4.
Dis Res ; 3(2): 74-86, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38213319

RESUMO

Background: Dental pulp-derived stem cells (DPSC) is a promising therapy as they modulate the immune response, so we evaluated the inhibitory effect of DPSC secretome (DPSC℗) on the proliferation and inflammation in human glioblastoma (GBM) cells (U-87 MG) and elucidated the concomitant mechanisms involved. Methods: The U87-MG cells were cultured with DPSC℗ for 24 h and assessed the expression of inflammatory molecules using quantitative reverse transcription-polymerase chain reaction (qRT-PCR), generation of reactive oxygen species (ROS), and mitochondrial functionality using a seahorse flux analyzer. MTT (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) assay and cell cycle analysis were performed to evaluate the proliferation and cell cycle. Finally, the protein levels were determined by western blot. Results: DPSC℗ reduced the inflammation and proliferation of U-87 MG cells by down-regulating the pro-inflammatory markers and up-regulating anti-inflammatory markers expressions through ROS-mediated signaling. Moreover, DPSC℗ significantly reduced the mitochondrial membrane potential (MMP) in the cells. The cellular bioenergetics revealed that all the parameters of oxygen consumption rate (OCAR) and the extracellular acidification rate (ECAR) were significantly decreased in the GBM cells after the addition of DPSC℗. Additionally, DPSC℗ decreased the GBM cell proliferation by arresting the cell cycle at the G1 phase through activation (phosphorylation) of checkpoint molecule CHK1. Furthermore, mechanistically, we found that the DPSC℗ impedes the phosphorylation of the mitogen-activated protein kinases (P38 MAPK) and protein kinase B (AKT) pathway. Conclusion: Our findings lend the first evidence of the inhibitory effects of DPSC℗ on proliferation and inflammation in GBM cells by altering the P38 MAPK-AKT pathway.

5.
Cell Biochem Biophys ; 80(4): 657-664, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36190618

RESUMO

Exposure to sunlight, mainly UVA, leads to typical changes in the features of the skin known as photoaging. UVA irradiation induces the expression of proteases that are responsible for the degradation of the extracellular matrix proteins to results in photoaging; it also downregulates the expression of proteins that are needed for the skin structure. Since, it is known that cells in the neighborhood of irradiated cells, but not directly exposed to it, often manifest responses like their irradiated counterparts, it is important to evaluate if these bystander cells too, can contribute to photoaging. UVA induced cell cycle arrest has been associated with photoaging, from flow cytometry analysis we found that there was an induction of cell cycle arrest at the G1/S phase in the UVA-bystander cells. The expression of some key photoaging marker genes likes, matrix metalloproteinases (MMP-1, MMP-3, MMP-9), cyclooxygenase-2 (COX-2), collagen1 and elastin were assessed from qRT-PCR. Up-regulation of MMP-1 and COX-2, downregulation of collagen1 and elastin, along with suppression below normal expression for MMP-3 and MMP-9 was observed in the UVA-bystander A375 cells. Our findings suggest that UVA-bystander cells may contribute to the process of photoaging.


Assuntos
Envelhecimento da Pele , Dermatopatias , Efeito Espectador , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Elastina/metabolismo , Fibroblastos/metabolismo , Humanos , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Pele/metabolismo , Raios Ultravioleta/efeitos adversos
6.
Artigo em Inglês | MEDLINE | ID: mdl-35895930

RESUMO

Ultraviolet (UV) irradiated cells release factors that result in varied responses by non-irradiated cells via bystander effects (BE). The UV-BE is dependent on the cell types involved and on the wavelength of the radiation. Using conditioned medium from UVA-irradiated A375 human melanoma cells (UVA-CM), UVA-bystander response was evaluated on the viability of naïve A375 cells. UVA-CM treatment itself did not alter cell viability; however, UVA-CM treated bystander cells were more resistant to the lethal action of UVA, UVB, UVC or H2O2. Effects of UVA-CM on cell proliferation, mechanism of cell death, DNA damage, malondialdehyde formation, generation of reactive oxygen species (ROS) and antioxidant status were studied in A375 cells. We observed that UVA-CM triggered antioxidant defenses to elicit protective responses through elevation of antioxidant enzyme activities in cells, which persisted until 5 h after exposure to UVA-CM. This was possibly responsible for decreased generation of ROS and diminished DNA and membrane damage in cells. These bystander cells were resistant to killing when exposed to different genotoxic agents. Damaged nuclei, induction of apoptosis and autophagic death were also lowered in these cells. The influence of UVA-CM on cancer stem cells side population was assessed.Highlights:UVA radiation induced bystander effects in A375 cellsDamage by genotoxicants is suppressed due to lower ROS generation on UVA-CM treatmentUVA-CM exposure enhanced higher activities of CAT and GPxResistance to genotoxic agents in such cells was due to elevated antioxidant defenceUVA-bystander phenomenon was a protective response.


Assuntos
Efeito Espectador , Melanoma , Antioxidantes/metabolismo , Efeito Espectador/efeitos da radiação , Humanos , Peróxido de Hidrogênio/farmacologia , Melanoma/genética , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/farmacologia , Raios Ultravioleta
7.
Artigo em Inglês | MEDLINE | ID: mdl-33586599

RESUMO

Acridine and its derivatives are well known for their DNA binding properties. In this report, we present our findings on evaluating different binding parameters of the interaction of 9-phenylacridine (ACPH) with DNA. Absorption spectroscopic studies including standard and reverse titration, the effects of ionic strength and temperature on titration, and Job plot analysis were done to calculate the binding constant and determine the different thermodynamic parameters and stoichiometry of the binding. Spectrofluorimetry and circular dichroism (CD) spectral titration were also utilized to confirm these findings. The results indicated that ACPH binds to DNA reversibly through non-electrostatic interactions by hydrogen bonding and van der Waals interactions. The binding constant and the number of binding sites were of the order 103 M-1 and ≈2, respectively with a binding stoichiometry of 1:4. The binding of ACPH with DNA was spontaneous, exothermic and enthalpy-driven. The extent of uptake of ACPH in B16 melanoma cells was estimated. As this compound absorbs in the UVA region, the effect of treatment with ACPH prior to UVA exposure was assessed to evaluate its phototoxicity in these cells. Our results indicated that the binding to DNA enhanced damage to sensitize cells to killing through apoptosis. Our findings indicated its potential to act as a photosensitizer.


Assuntos
Acridinas/farmacologia , Antineoplásicos/farmacologia , DNA/química , Fármacos Fotossensibilizantes/farmacologia , Raios Ultravioleta , Acridinas/química , Animais , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Bovinos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Camundongos , Concentração Osmolar , Fármacos Fotossensibilizantes/química , Espectrometria de Fluorescência , Termodinâmica
8.
Heliyon ; 6(9): e04733, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32944667

RESUMO

Acridines are an important class of bioactive molecules having varied uses. Its derivative, 9-phenylacridine (ACPH) had been found to exhibit antitumor activity both in cell lines and in vivo model. Its DNA binding ability and absorbance in the ultraviolet range encouraged us to investigate its role as a photosensitizer with UVA radiation. We investigated the effects of ACPH prior to UVA exposure on in vitro DNA through photo-cleavage assay. Effect of such treatment was also studied in cultured A375 melanoma cells. Endpoints studied included morphological changes, evaluation of cellular viability, scratch assay, intracellular reactive oxygen species (ROS) production, DNA damage, lipid peroxidation, glutathione (GSH) level, autophagy, cell cycle progression, depletion of mitochondrial membrane potential (ΔΨmt), induction of apoptosis and Hoechst dye efflux assay. Our findings indicated that ACPH could sensitize damage to DNA induced by UVA both in vitro and in cells. It could also potentiate cell killing by UVA. It arrested cells in G2/M phase and induced apoptotic death through mitochondria mediated pathway. This sensitization was through enhancement of intracellular ROS. Our findings also indicated that the stem cells side population was reduced on such treatment. The findings are important as it indicates ACPH as a promising photosensitizer and indicates its possible role in photodynamic therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...