Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Toxicol Environ Health A ; : 1-24, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37395093

RESUMO

Fish early life stages are well known for their sensitivity to crude oil exposure. However, the effect of crude oil exposure on adults and their gametes during their spawning period is not well studied. Polar cod, a key arctic fish, may be at risk for crude oil exposure during this potentially sensitive life stage. Additionally, this species experiences lower food availability during their spawning season, with unknown combined consequences. In the present study, wild-caught polar cod were exposed to decreasing levels of a water-soluble fraction (WSF) of crude oil or control conditions and fed either at a low or high feed ration to assess the combined effect of both stressors. Samples were taken during late gonadal development, during active spawning (spawning window), and in the post-spawning period. Histology analysis of gonads from fish sampled during the spawning window showed that oil-exposed polar cod were more likely to have spawned compared to controls. Oil-exposed females had 947 differentially regulated hepatic genes, and their eggs had a higher polycyclic aromatic hydrocarbon body burden compared to controls. Feed ration did not consistently affect polar cod's response to oil exposure for the endpoints measured, however, did alone result in decreases in some sperm motility parameters. These results suggest that polar cod's spawning period is a sensitive life event to crude oil exposure, while feed limitation may play a minor role for this supposedly capital breeder. The effects of adult exposure to crude oil on gamete quality and the next generation warrant further investigation.

2.
Chemosphere ; 265: 129144, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33293050

RESUMO

A tube-feeding model for administering microplastic (MP, Ø = 30 µm) spheres to fish larvae was employed to quantify the uptake of hydrophobic organic contaminants (HOCs) into the larval body through a single administration of MP. Polychlorinated biphenyl-153 (PCB-153) was used as a representative HOC that can be sorbed to MP in the sea. Atlantic herring (Clupea harengus) larvae (34-51 days post-hatching) were selected as the animal model. The herring larvae were tube-fed a single load of up to 200 polystyrene or polyethylene MP spheres spiked with 14C-labelled PCB-153, and the control larvae were tube-fed an isotonic solution without MP. At the time of sampling (24 h post feeding), some larvae had evacuated all MP spheres from the gut, while others still had MP remaining in the gut. In larvae with a significant number of MP spheres still present in the gut, whole-body scintillation counting (including the MP in the gut lumen) showed elevated levels of the tracer compared to those in the control fish larvae. For larvae in which all or almost all MP had been evacuated by the time of sampling, the tracer levels of the whole body were not significantly different compared to those for the control fish larvae. These data indicate that there was no significant transfer of PCB-153 from contaminated MP into fish larvae within a gut-transit time of <24 h. This study suggests that the vector role of MP in HOC uptake and absorption may be minor compared to that of other HOC uptake pathways.


Assuntos
Bifenilos Policlorados , Poluentes Químicos da Água , Animais , Peixes , Larva , Microplásticos , Plásticos , Poluentes Químicos da Água/análise
3.
J Therm Biol ; 89: 102562, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32364994

RESUMO

Fish are ectothermic animals and have body temperatures close to that of the water they inhabit. They can still control their body temperatures by selecting habitats with temperatures that maximize their growth, feed conversion and wellbeing. Lumpfish, Cyclopterus lumpus, is widely distributed in the North Atlantic Ocean and therefore exposed to variable water temperatures. Lumpfish is extensively used as cleanerfish in salmon farming in Norway and exposed to a wide temperature range along the north-south axis of the Norwegian coastline. But, if these temperature ranges correspond to the preference temperatures of lumpfish is not known. If lumpfish has adapted to regional temperatures along the Norwegian coast, differences in preference temperature for fish from different regions should be evident. In a selective breeding perspective, different selection lines for preference temperature would then be useful for further development of lumpfish as a cleanerfish. We subjected lumpfish juveniles weighing 154-426g originated from northern (Group North - GN) and southern (Group South - GS) Norway to a temperature preference test, using an electronic shuttle box system. The system allowed the fish to control the water temperature by moving between two chambers, and thereby choosing its preferred temperature in the range from 5 to 16 °C. We started the temperature at 7.8 ± 1.37 °C for GN and 7.58 ± 1.34 °C for GS, but all the fish except four (two each from GN and GS) chose lower temperatures (5.03-7.6 °C) in the first 18 h and stayed closer to that temperature during the next 30 h. Based on the results, GN and GS lumpfish preferred 6.92 ± 1.8 and 6.2 ± 1.2, respectively, and there was no significant difference between the groups. Neither was there any significant difference in growth rates (SGR) between the two groups. Based on our results, we suggest that lumpfish from any geographical origin along the Norwegian coast can be used anywhere in Norway. It follows that lumpfish from a single selection line could be used at any salmon farm in Norway independent of its location.


Assuntos
Adaptação Fisiológica , Distribuição Animal , Peixes/fisiologia , Temperatura , Animais , Tamanho Corporal , Temperatura Corporal , Cruzamento/métodos , Ecossistema , Peixes/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...