Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 80(15): 4702-16, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24837393

RESUMO

Acetic acid bacteria (AAB) play an important role during cocoa fermentation, as their main product, acetate, is a major driver for the development of the desired cocoa flavors. Here, we investigated the specialized metabolism of these bacteria under cocoa pulp fermentation-simulating conditions. A carefully designed combination of parallel 13C isotope labeling experiments allowed the elucidation of intracellular fluxes in the complex environment of cocoa pulp, when lactate and ethanol were included as primary substrates among undefined ingredients. We demonstrate that AAB exhibit a functionally separated metabolism during coconsumption of two-carbon and three-carbon substrates. Acetate is almost exclusively derived from ethanol, while lactate serves for the formation of acetoin and biomass building blocks. Although this is suboptimal for cellular energetics, this allows maximized growth and conversion rates. The functional separation results from a lack of phosphoenolpyruvate carboxykinase and malic enzymes, typically present in bacteria to interconnect metabolism. In fact, gluconeogenesis is driven by pyruvate phosphate dikinase. Consequently, a balanced ratio of lactate and ethanol is important for the optimum performance of AAB. As lactate and ethanol are individually supplied by lactic acid bacteria and yeasts during the initial phase of cocoa fermentation, respectively, this underlines the importance of a well-balanced microbial consortium for a successful fermentation process. Indeed, AAB performed the best and produced the largest amounts of acetate in mixed culture experiments when lactic acid bacteria and yeasts were both present.


Assuntos
Acetatos/metabolismo , Ácido Acético/metabolismo , Bactérias/metabolismo , Cacau/microbiologia , Bactérias/enzimologia , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cacau/metabolismo , Etanol/metabolismo , Fermentação
2.
Appl Environ Microbiol ; 79(18): 5670-81, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23851099

RESUMO

In the present work, simulated cocoa fermentation was investigated at the level of metabolic pathway fluxes (fluxome) of lactic acid bacteria (LAB), which are typically found in the microbial consortium known to convert nutrients from the cocoa pulp into organic acids. A comprehensive (13)C labeling approach allowed to quantify carbon fluxes during simulated cocoa fermentation by (i) parallel (13)C studies with [(13)C6]glucose, [1,2-(13)C2]glucose, and [(13)C6]fructose, respectively, (ii) gas chromatography-mass spectrometry (GC/MS) analysis of secreted acetate and lactate, (iii) stoichiometric profiling, and (iv) isotopomer modeling for flux calculation. The study of several strains of L. fermentum and L. plantarum revealed major differences in their fluxes. The L. fermentum strains channeled only a small amount (4 to 6%) of fructose into central metabolism, i.e., the phosphoketolase pathway, whereas only L. fermentum NCC 575 used fructose to form mannitol. In contrast, L. plantarum strains exhibited a high glycolytic flux. All strains differed in acetate flux, which originated from fractions of citrate (25 to 80%) and corresponding amounts of glucose and fructose. Subsequent, metafluxome studies with consortia of different L. fermentum and L. plantarum strains indicated a dominant (96%) contribution of L. fermentum NCC 575 to the overall flux in the microbial community, a scenario that was not observed for the other strains. This highlights the idea that individual LAB strains vary in their metabolic contribution to the overall fermentation process and opens up new routes toward streamlined starter cultures. L. fermentum NCC 575 might be one candidate due to its superior performance in flux activity.


Assuntos
Cacau/metabolismo , Ácidos Carboxílicos/metabolismo , Lactobacillus/metabolismo , Análise do Fluxo Metabólico , Metabolismo dos Carboidratos , Isótopos de Carbono/metabolismo , Fermentação , Cromatografia Gasosa-Espectrometria de Massas , Marcação por Isótopo , Modelos Teóricos
3.
AMB Express ; 3: 28, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23692950

RESUMO

The potential of Lactobacillus johnsonii NCC 533 to metabolize chlorogenic acids from green coffee extract was investigated. Two enzymes, an esterase and a hydroxycinnamate decarboxylase (HCD), were involved in this biotransformation. The complete hydrolysis of 5-caffeoylquinic acid (5-CQA) into caffeic acid (CA) by L. johnsonii esterase occurred during the first 16 h of reaction time. No dihydrocaffeic acid was identified in the reaction mixture. The decarboxylation of CA into 4-vinylcatechol (4-VC) started only when the maximum concentration of CA was reached (10 µmol/ml). CA was completely transformed into 4-VC after 48 h of incubation. No 4-vinylphenol or other derivatives could be identified in the reaction media. In this study we demonstrate the capability of L. johnsonii to transform chlorogenic acids from green coffee extract into 4-VC in two steps one pot reaction. Thus, the enzymatic potential of certain lactobacilli might be explored to generate flavor compounds from plant polyphenols.

4.
J Agric Food Chem ; 57(17): 7700-5, 2009 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-19658402

RESUMO

Rosmarinic acid (RA) was identified as one of the main components of rosemary extracts and has been ascribed to a number of health benefits. Several studies suggested that after ingestion, RA is metabolized by gut microflora into caffeic acid and derivatives. However, only limited information on the microorganisms and enzymes involved in this biotransformation is available. In this study, we investigated the hydrolysis of RA from rosemary extract with enzymes and a probiotic bacterium Lactobacillus johnsonii NCC 533. Chlorogenate esterase from Aspergillus japonicus (0.02 U/mg) hydrolyzed 90% of RA (5 mg/mL) after 2 h at pH 7.0 and 40 degrees C. Complete hydrolysis of RA (5 mg/mL) was achieved with a preparation of L. johnsonii (25 mg/mL, 3.3 E9 cfu/g) after 2 h of incubation at pH 7.0 and 37 degrees C. No hydrolysis of RA was observed after the passage of rosemary extract through the gastrointestinal tract model (GI model). Thus, RA is hydrolyzed neither chemically under the conditions of the GI model (temperature, pH, and bile salts) nor by secreted enzymatic activity (lipase and pancreatic enzymes). The addition of L. johnsonii cells to rosemary extract in the GI model resulted in substantial hydrolysis of RA (up to 99%).


Assuntos
Cinamatos/metabolismo , Depsídeos/metabolismo , Esterases/metabolismo , Trato Gastrointestinal , Lactobacillus/metabolismo , Rosmarinus/química , Animais , Aspergillus/enzimologia , Hidrolases de Éster Carboxílico/metabolismo , Trato Gastrointestinal/enzimologia , Trato Gastrointestinal/microbiologia , Lactobacillus/enzimologia , Modelos Biológicos , Extratos Vegetais/química , Ácido Rosmarínico
5.
Lipids ; 42(10): 947-53, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17623117

RESUMO

We report here a two-step process for the high-yield enzymatic synthesis of 2-monoacylglycerides (2-MAG) of saturated as well as unsaturated fatty acids with different chain lengths. The process consists of two steps: first the unselective esterification of fatty acids and glycerol leading to a triacylglyceride followed by an sn1,3-selective alcoholysis reaction yielding 2-monoacylglycerides. Remarkably, both steps can be catalyzed by lipase B from Candida antarctica (CalB). The whole process including esterification and alcoholysis was scaled up in a miniplant to a total volume of 10 l. With this volume, a two-step process catalyzed by CalB for the synthesis of 1,3-oleoyl-2-palmitoylglycerol (OPO) using tripalmitate as starting material was established. On a laboratory scale, we obtained gram quantities of the synthesized 2-monoacylglycerides of polyunsaturated fatty acids such as arachidonic-, docosahexaenoic- and eicosapentaenoic acids and up to 96.4% of the theoretically possible yield with 95% purity. On a technical scale (>100 g of product, >5 l of reaction volume), 97% yield was reached in the esterification and 73% in the alcoholysis and a new promising process for the enzymatic synthesis of OPO was established.


Assuntos
Lipase/metabolismo , Monoglicerídeos/biossíntese , Triglicerídeos/biossíntese , Bioquímica/métodos , Catálise , Esterificação , Ácidos Graxos Insaturados/metabolismo , Proteínas Fúngicas , Ácido Oleico/metabolismo , Triglicerídeos/química
6.
Appl Microbiol Biotechnol ; 72(5): 931-8, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16575565

RESUMO

The current investigation focuses on shedding further light on the characteristics of lipase A from Candida antarctica (CalA), which has attracted growing attention in its suitability for industrial applications. CalA was functionally expressed in the methylotrophic yeast Pichia pastoris, purified and characterised. A classical fed-batch process and a semi-continuous process were developed and tested with regard to their yield capacity. Lipase concentrations of 0.88 and 0.55 g l(-1) were obtained using the fed-batch and semi-continuous processes, respectively. The semi-continuous process reaches a total activity of 10,233,000 U and so surpasses the fed-batch process reaching 7,530,000 U. The purified enzyme showed highest activity between 50 and 70 degrees C at pH 7.0 and a preference for short-chain triglycerides (C4-C8). Significantly reduced activity was observed in the presence of hydrophilic esters.


Assuntos
Candida/enzimologia , Lipase/metabolismo , Pichia/genética , Pichia/metabolismo , Estabilidade Enzimática , Fermentação , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Concentração de Íons de Hidrogênio , Cinética , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...