Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 12868, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834690

RESUMO

Acute myeloid leukemia (AML) is fatal in the majority of adults. Identification of new therapeutic targets and their pharmacologic modulators are needed to improve outcomes. Previous studies had shown that immunization of rabbits with normal peripheral WBCs that had been incubated with fluorodinitrobenzene elicited high titer antibodies that bound to a spectrum of human leukemias. We report that proteomic analyses of immunoaffinity-purified lysates of primary AML cells showed enrichment of scaffolding protein IQGAP1. Immunohistochemistry and gene-expression analyses confirmed IQGAP1 mRNA overexpression in various cytogenetic subtypes of primary human AML compared to normal hematopoietic cells. shRNA knockdown of IQGAP1 blocked proliferation and clonogenicity of human leukemia cell-lines. To develop small molecules targeting IQGAP1 we performed in-silico screening of 212,966 compounds, selected 4 hits targeting the IQGAP1-GRD domain, and conducted SAR of the 'fittest hit' to identify UR778Br, a prototypical agent targeting IQGAP1. UR778Br inhibited proliferation, induced apoptosis, resulted in G2/M arrest, and inhibited colony formation by leukemia cell-lines and primary-AML while sparing normal marrow cells. UR778Br exhibited favorable ADME/T profiles and drug-likeness to treat AML. In summary, AML shows response to IQGAP1 inhibition, and UR778Br, identified through in-silico studies, selectively targeted AML cells while sparing normal marrow.


Assuntos
Proliferação de Células , Leucemia Mieloide Aguda , Proteínas Ativadoras de ras GTPase , Humanos , Proteínas Ativadoras de ras GTPase/metabolismo , Proteínas Ativadoras de ras GTPase/genética , Proteínas Ativadoras de ras GTPase/antagonistas & inibidores , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/genética , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Simulação por Computador , Antineoplásicos/farmacologia , Domínios Proteicos , Animais , Proteômica/métodos
2.
Cancers (Basel) ; 15(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37444542

RESUMO

Small-molecule inhibitors of PD-L1 are postulated to control immune evasion in tumors similar to antibodies that target the PD-L1/PD-1 immune checkpoint axis. However, the identity of targetable PD-L1 inducers is required to develop small-molecule PD-L1 inhibitors. In this study, using chromatin immunoprecipitation (ChIP) assay and siRNA, we demonstrate that vitamin D/VDR regulates PD-L1 expression in acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) cells. We have examined whether a VDR antagonist, MeTC7, can inhibit PD-L1. To ensure that MeTC7 inhibits VDR/PD-L1 without off-target effects, we examined competitive inhibition of VDR by MeTC7, utilizing ligand-dependent dimerization of VDR-RXR, RXR-RXR, and VDR-coactivators in a mammalian 2-hybrid (M2H) assay. MeTC7 inhibits VDR selectively, suppresses PD-L1 expression sparing PD-L2, and inhibits the cell viability, clonogenicity, and xenograft growth of AML cells. MeTC7 blocks AML/mesenchymal stem cells (MSCs) adhesion and increases the efferocytotic efficiency of THP-1 AML cells. Additionally, utilizing a syngeneic colorectal cancer model in which VDR/PD-L1 co-upregulation occurs in vivo under radiation therapy (RT), MeTC7 inhibits PD-L1 and enhances intra-tumoral CD8+T cells expressing lymphoid activation antigen-CD69. Taken together, MeTC7 is a promising small-molecule inhibitor of PD-L1 with clinical potential.

3.
J Med Chem ; 65(8): 6039-6055, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35404047

RESUMO

Vitamin-D receptor (VDR) mRNA is overexpressed in neuroblastoma and carcinomas of lung, pancreas, and ovaries and predicts poor prognoses. VDR antagonists may be able to inhibit tumors that overexpress VDR. However, the current antagonists are arduous to synthesize and are only partial antagonists, limiting their use. Here, we show that the VDR antagonist MeTC7 (5), which can be synthesized from 7-dehydrocholesterol (6) in two steps, inhibits VDR selectively, suppresses the viability of cancer cell-lines, and reduces the growth of the spontaneous transgenic TH-MYCN neuroblastoma and xenografts in vivo. The VDR selectivity of 5 against RXRα and PPAR-γ was confirmed, and docking studies using VDR-LBD indicated that 5 induces major changes in the binding motifs, which potentially result in VDR antagonistic effects. These data highlight the therapeutic benefits of targeting VDR for the treatment of malignancies and demonstrate the creation of selective VDR antagonists that are easy to synthesize.


Assuntos
Neuroblastoma , Receptores de Calcitriol , Animais , Animais Geneticamente Modificados , Xenoenxertos , Humanos , Receptores de Calcitriol/antagonistas & inibidores , Receptores de Calcitriol/metabolismo , Vitaminas
4.
Oncogenesis ; 9(5): 50, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32415090

RESUMO

Aberrant expression of protein arginine methyltransferases (PRMTs) has been implicated in a number of cancers, making PRMTs potential therapeutic targets. But it remains not well understood how PRMTs impact specific oncogenic pathways. We previously identified PRMTs as important regulators of cell growth in neuroblastoma, a deadly childhood tumor of the sympathetic nervous system. Here, we demonstrate a critical role for PRMT1 in neuroblastoma cell survival. PRMT1 depletion decreased the ability of murine neuroblastoma sphere cells to grow and form spheres, and suppressed proliferation and induced apoptosis of human neuroblastoma cells. Mechanistic studies reveal the prosurvival factor, activating transcription factor 5 (ATF5) as a downstream effector of PRMT1-mediated survival signaling. Furthermore, a diamidine class of PRMT1 inhibitors exhibited anti-neuroblastoma efficacy both in vitro and in vivo. Importantly, overexpression of ATF5 rescued cell apoptosis triggered by PRMT1 inhibition genetically or pharmacologically. Taken together, our findings shed new insights into PRMT1 signaling pathway, and provide evidence for PRMT1 as an actionable therapeutic target in neuroblastoma.

5.
J Virol ; 92(18)2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29950420

RESUMO

Following the initial detection of viral infection, innate immune responses trigger the induction of numerous interferon-stimulated genes (ISGs) to inhibit virus replication and dissemination. One such ISG encodes cholesterol-25-hydroxylase (CH25H), an enzyme that catalyzes the oxidation of cholesterol to form a soluble product, 25-hydroxycholesterol (25HC). Recent studies have found that CH25H is broadly antiviral; it inhibits infection by several viruses. For enveloped viruses, 25HC inhibits membrane fusion, likely by altering membrane characteristics such as hydrophobicity or cholesterol aggregation. However, the mechanisms by which 25HC restricts infection of nonenveloped viruses are unknown. We examined whether 25HC restricts infection by mammalian reovirus. Treatment with 25HC restricted infection by reovirus prototype strains type 1 Lang and type 3 Dearing. In contrast to reovirus virions, 25HC did not restrict infection by reovirus infectious subvirion particles (ISVPs), which can penetrate either directly at the cell surface or in early endosomal membranes. Treatment with 25HC altered trafficking of reovirus particles to late endosomes and delayed the kinetics of reovirus uncoating. These results suggest that 25HC inhibits the efficiency of cellular entry of reovirus virions, which may require specific endosomal membrane dynamics for efficient membrane penetration.IMPORTANCE The innate immune system is crucial for effective responses to viral infection. Type I interferons, central components of innate immunity, induce expression of hundreds of ISGs; however, the mechanisms of action of these antiviral proteins are not well understood. CH25H, encoded by an ISG, represents a significant constituent of these cellular antiviral strategies, as its metabolic product, 25HC, can act in both an autocrine and a paracrine fashion to protect cells from infection and has been shown to limit viral infection in animal models. Further investigation into the mechanism of action of 25HC may inform novel antiviral therapies and influence the use of mammalian reovirus in clinical trials as an oncolytic agent.


Assuntos
Antivirais/farmacologia , Hidroxicolesteróis/metabolismo , Hidroxicolesteróis/farmacologia , Reoviridae/efeitos dos fármacos , Esteroide Hidroxilases/genética , Replicação Viral/efeitos dos fármacos , Animais , Linhagem Celular , Células HeLa , Humanos , Imunidade Inata/efeitos dos fármacos , Interferon Tipo I/genética , Interferon Tipo I/farmacologia , Reoviridae/fisiologia , Esteroide Hidroxilases/metabolismo , Vírion , Internalização do Vírus/efeitos dos fármacos
6.
ACS Chem Neurosci ; 8(10): 2118-2123, 2017 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-28800395

RESUMO

Neuroblastoma is a cancer of the neural crest almost exclusively seen in childhood. While children with single, small primary tumors are often cured with surgery alone, the 65% of children with neuroblastoma whose disease has metastasized have less than a 50% chance of surviving five years after diagnosis. Innovative pharmacological strategies are critically needed for these children. Efforts to identify novel targets that afford ablation of neuroblastoma with minimal toxicity to normal tissues are underway. Developing approaches to neuroblastoma include those that target the catecholamine transporter, ubiquitin E3 ligase, the ganglioside GD2, the retinoic acid receptor, the protein kinases ALK and Aurora, and protein arginine N-methyltransferases. Here, as examples of the use of chemistry to combat neuroblastoma, we describe targeting of the protein arginine N-methyltransferases and their role in prolonging the half-life of the neuroblastoma oncoprotein N-Myc, redox signaling in neuroblastoma, and developmentally regulated proteins expressed in primitive neuroblastoma cells but not in mature neural crest elements.


Assuntos
Arginina/análogos & derivados , Neuroblastoma/cirurgia , Proteínas Oncogênicas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Arginina/química , Humanos , Crista Neural/metabolismo , Neuroblastoma/patologia , Transdução de Sinais/fisiologia
7.
FASEB J ; 31(6): 2327-2339, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28213359

RESUMO

The eyes absent (EYA) family proteins are conserved transcriptional coactivators with intrinsic protein phosphatase activity. They play an essential role in the development of various organs in metazoans. These functions are associated with a unique combination of phosphatase and transactivation activities. However, it remains poorly understood how these activities and the consequent biologic functions of EYA are regulated. Here, we demonstrate that 2 conserved arginine residues, R304 and R306, of EYA1 are essential for its in vitro phosphatase activity and in vivo function during Drosophila eye development. EYA1 physically interacts with protein arginine methyltransferase 1, which methylates EYA1 at these residues both in vitro and in cultured mammalian and insect cells. Moreover, we show that wild-type, but not methylation-defective, EYA1 associates with γ-H2A.X in response to ionizing radiation. Taken together, our results identify the conserved arginine residues of EYA1 that play an important role for its activity, thus implicating arginine methylation as a novel regulatory mechanism of EYA function.-Li, X., Eberhardt, A., Hansen, J. N., Bohmann, D., Li, H., Schor, N. F. Methylation of the phosphatase-transcription activator EYA1 by protein arginine methyltransferase 1: mechanistic, functional, and structural studies.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Drosophila melanogaster , Regulação Enzimológica da Expressão Gênica , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Metilação , Mutação , Proteínas Nucleares/genética , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas Tirosina Fosfatases/genética , Proteína-Arginina N-Metiltransferases/genética
8.
Eur J Hum Genet ; 25(2): 216-221, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27966542

RESUMO

SIK1 syndrome is a newly described developmental epilepsy disorder caused by heterozygous mutations in the salt-inducible kinase SIK1. To better understand the pathophysiology of SIK1 syndrome, we studied the effects of SIK1 pathogenic sequence variations in human neurons. Primary human fetal cortical neurons were transfected with a lentiviral vector to overexpress wild-type and mutant SIK1 protein. We evaluated the transcriptional activity of known downstream gene targets in neurons expressing mutant SIK1 compared with wild type. We then assayed neuronal morphology by measuring neurite length, number and branching. Truncating SIK1 sequence variations were associated with abnormal MEF2C transcriptional activity and decreased MEF2C protein levels. Epilepsy-causing SIK1 sequence variations were associated with significantly decreased expression of ARC (activity-regulated cytoskeletal-associated) and other synaptic activity response element genes. Assay of mRNA levels for other MEF2C target genes NR4A1 (Nur77) and NRG1, found significantly, decreased the expression of these genes as well. The missense p.(Pro287Thr) SIK1 sequence variation was associated with abnormal neuronal morphology, with significant decreases in mean neurite length, mean number of neurites and a significant increase in proximal branches compared with wild type. Epilepsy-causing SIK1 sequence variations resulted in abnormalities in the MEF2C-ARC pathway of neuronal development and synapse activity response. This work provides the first insights into the mechanisms of pathogenesis in SIK1 syndrome, and extends the ARX-MEF2C pathway in the pathogenesis of developmental epilepsy.


Assuntos
Epilepsia/genética , Mutação , Neurônios/metabolismo , Proteínas Serina-Treonina Quinases/genética , Transmissão Sináptica , Células Cultivadas , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Epilepsia/metabolismo , Epilepsia/patologia , Células HEK293 , Humanos , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neuregulina-1/genética , Neuregulina-1/metabolismo , Neurônios/patologia , Neurônios/fisiologia , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo
9.
Oncotarget ; 7(39): 63629-63639, 2016 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-27571165

RESUMO

Amplification or overexpression of MYCN is associated with poor prognosis of human neuroblastoma. We have recently defined a MYCN-dependent transcriptional signature, including protein arginine methyltransferase 1 (PRMT1), which identifies a subgroup of patients with high-risk disease. Here we provide several lines of evidence demonstrating PRMT1 as a novel regulator of MYCN and implicating PRMT1 as a potential therapeutic target in neuroblastoma pathogenesis. First, we observed a strong correlation between MYCN and PRMT1 protein levels in primary neuroblastoma tumors. Second, MYCN physically associates with PRMT1 by direct protein-protein interaction. Third, depletion of PRMT1 through siRNA knockdown reduced neuroblastoma cell viability and MYCN expression. Fourth, we showed that PRMT1 regulates MYCN stability and identified MYCN as a novel substrate of PRMT1. Finally, we demonstrated that mutation of putatively methylated arginine R65 to alanine decreased MYCN stability by altering phosphorylation at residues serine 62 and threonine 58. These results provide mechanistic insights into the modulation of MYCN oncoprotein by PRMT1, and suggest that targeting PRMT1 may have a therapeutic impact on MYCN-driven oncogenesis.


Assuntos
Neoplasias Encefálicas/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteína Proto-Oncogênica N-Myc/metabolismo , Neuroblastoma/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Repressoras/metabolismo , Arginina/química , Perfilação da Expressão Gênica , Humanos , Mutação , Fosforilação , Prognóstico , Modelos de Riscos Proporcionais , Processamento de Proteína Pós-Traducional , RNA Interferente Pequeno/metabolismo , Treonina/química
10.
J Cancer Res Ther (Manch) ; 4(2): 11-18, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28713571

RESUMO

Neuroblastoma, the most frequently occurring extracranial solid tumor of childhood, arises from neural crest-derived cells that are arrested at an early stage of differentiation in the developing sympathetic nervous system. There is an urgent need to identify clinically relevant biomarkers for better prognosis and treatment of this aggressive malignancy. Eyes Absent 1 (EYA1) is an essential transcriptional coactivator for neuronal developmental programs during organogenesis. Whether or not EYA1 is implicated in neuroblastoma and subcellular localization of EYA1 is relevant to clinical behaviour of neuroblastoma is not known. We studied EYA1 expression and subcellular localization by immunohistochemistry in tissue microarrays containing tumor specimens from 98 patients, 66 of which were characterized by known clinical prognostic markers of neuroblastoma. Immunostaining results were evaluated and statistically correlated with the degree of histologic differentiation and with neuroblastoma risk stratification group characteristics, including stage of disease, patient age, tumor histology and mitosis-karyorrhexis index (MKI), respectively. We found that EYA1 levels were significantly higher in neuroblastomas than in ganglioneuromas and ganglioneuroblastomas. EYA1 was more highly expressed in stage 1,2,3 or 4S tumors as compared to stage 4 tumors (P<0.01). Tumors with high levels of nuclear EYA1 were more frequently associated with high nuclear MYCN levels. These results suggest that modulation of expression and intracellular localization of EYA1 in neural crest cells may provide a novel direction for therapeutic strategies.

11.
DNA Cell Biol ; 30(9): 641-51, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21332387

RESUMO

Nuclear protein import in eukaryotic cells is mediated by karyopherin proteins, which bind to specific nuclear localization signals on substrate proteins and transport them across the nuclear envelope and into the nucleus. Replication protein A (RPA) is a nuclear protein comprised of three subunits (termed Rfa1, Rfa2, and Rfa3 in Saccharomyces cerevisiae) that binds single-stranded DNA and is essential for DNA replication, recombination, and repair. RPA associates with two different karyopherins in yeast, Kap95, and Msn5/Kap142. However, it is unclear which of these karyopherins is responsible for RPA nuclear import. We have generated GFP fusion proteins with each of the RPA subunits and demonstrate that these Rfa-GFP chimeras are functional in yeast cells. The intracellular localization of the RPA proteins in live cells is similar in wild-type and msn5Δ deletion strains but becomes primarily cytoplasmic in cells lacking functional Kap95. Truncating the C-terminus of any of the RPA subunits results in mislocalization of the proteins to the cytoplasm and a loss of protein-protein interactions between the subunits. Our data indicate that Kap95 is likely the primary karyopherin responsible for RPA nuclear import in yeast and that the C-terminal regions of Rfa1, Rfa2, and Rfa3 are essential for efficient nucleocytoplasmic transport of each RPA subunit.


Assuntos
Transporte Ativo do Núcleo Celular/genética , Proteína de Replicação A/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , beta Carioferinas/metabolismo , Transporte Ativo do Núcleo Celular/fisiologia , Western Blotting , Primers do DNA/genética , Proteínas de Fluorescência Verde/metabolismo , Imunoprecipitação , Microscopia de Fluorescência , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteína de Replicação A/genética , Proteínas de Saccharomyces cerevisiae/genética , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...