Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 6780, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36384992

RESUMO

Spectroscopic measurements of dense plasmas at billions of atmospheres provide tests to our fundamental understanding of how matter behaves at extreme conditions. Developing reliable atomic physics models at these conditions, benchmarked by experimental data, is crucial to an improved understanding of radiation transport in both stars and inertial fusion targets. However, detailed spectroscopic measurements at these conditions are rare, and traditional collisional-radiative equilibrium models, based on isolated-atom calculations and ad hoc continuum lowering models, have proved questionable at and beyond solid density. Here we report time-integrated and time-resolved x-ray spectroscopy measurements at several billion atmospheres using laser-driven implosions of Cu-doped targets. We use the imploding shell and its hot core at stagnation to probe the spectral changes of Cu-doped witness layer. These measurements indicate the necessity and viability of modeling dense plasmas with self-consistent methods like density-functional theory, which impact the accuracy of radiation transport simulations used to describe stellar evolution and the design of inertial fusion targets.

2.
Sci Rep ; 12(1): 10827, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35760862

RESUMO

The interaction of an intense laser with a solid foil target can drive [Formula: see text] TV/m electric fields, accelerating ions to MeV energies. In this study, we experimentally observe that structured targets can dramatically enhance proton acceleration in the target normal sheath acceleration regime. At the Texas Petawatt Laser facility, we compared proton acceleration from a [Formula: see text] flat Ag foil, to a fixed microtube structure 3D printed on the front side of the same foil type. A pulse length (140-450 fs) and intensity ((4-10) [Formula: see text] W/cm[Formula: see text]) study found an optimum laser configuration (140 fs, 4 [Formula: see text] W/cm[Formula: see text]), in which microtube targets increase the proton cutoff energy by 50% and the yield of highly energetic protons ([Formula: see text] MeV) by a factor of 8[Formula: see text]. When the laser intensity reaches [Formula: see text] W/cm[Formula: see text], the prepulse shutters the microtubes with an overcritical plasma, damping their performance. 2D particle-in-cell simulations are performed, with and without the preplasma profile imported, to better understand the coupling of laser energy to the microtube targets. The simulations are in qualitative agreement with the experimental results, and show that the prepulse is necessary to account for when the laser intensity is sufficiently high.

3.
Artigo em Inglês | MEDLINE | ID: mdl-23848795

RESUMO

Nuclei interacting with electrons in dense plasmas acquire electronic bound states, modify continuum states, generate resonances and hopping electron states, and generate short-range ionic order. The mean ionization state (MIS), i.e, the mean charge Z of an average ion in such plasmas, is a valuable concept: Pseudopotentials, pair-distribution functions, equations of state, transport properties, energy-relaxation rates, opacity, radiative processes, etc., can all be formulated using the MIS of the plasma more concisely than with an all-electron description. However, the MIS does not have a unique definition and is used and defined differently in different statistical models of plasmas. Here, using the MIS formulations of several average-atom models based on density functional theory, we compare numerical results for Be, Al, and Cu plasmas for conditions inclusive of incomplete atomic ionization and partial electron degeneracy. By contrasting modern orbital-based models with orbital-free Thomas-Fermi models, we quantify the effects of shell structure, continuum resonances, the role of exchange and correlation, and the effects of different choices of the fundamental cell and boundary conditions. Finally, the role of the MIS in plasma applications is illustrated in the context of x-ray Thomson scattering in warm dense matter.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...