Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(5)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36903737

RESUMO

Strain-free GaAs cone-shell quantum structures (CSQS) with widely tunable wave functions (WF) are fabricated using local droplet etching (LDE) during molecular beam epitaxy (MBE). During MBE, Al droplets are deposited on an AlGaAs surface, which then drill low-density (about 1 × 107 cm-2) nanoholes with adjustable shape and size. Subsequently, the holes are filled with GaAs to form CSQS, where the size can be adjusted by the amount of GaAs deposited for hole filling. An electric field is applied in growth direction to tune the WF in a CSQS. The resulting highly asymmetric exciton Stark shift is measured using micro-photoluminescence. Here, the unique shape of the CSQS allows a large charge-carrier separation and, thus, a strong Stark shift of up to more than 16 meV at a moderate field of 65 kV/cm. This corresponds to a very large polarizability of 8.6 × 10-6 eVkV -2 cm2. In combination with simulations of the exciton energy, the Stark shift data allow the determination of the CSQS size and shape. Simulations of the exciton-recombination lifetime predict an elongation up to factor of 69 for the present CSQSs, tunable by the electric field. In addition, the simulations indicate the field-induced transformation of the hole WF from a disk into a quantum ring with a tunable radius from about 10 nm up to 22.5 nm.

2.
Nanomaterials (Basel) ; 12(17)2022 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-36080018

RESUMO

Strain-free GaAs quantum dots (QDs) are fabricated by filling droplet-etched nanoholes in AlGaAs. Using a template of nominally identical nanoholes, the QD size is precisely controlled by the thickness of the GaAs filling layer. Atomic force microscopy indicates that the QDs have a cone-shell shape. From single-dot photoluminescence measurements, values of the exciton emission energy (1.58...1.82 eV), the exciton-biexciton splitting (1.8...2.5 meV), the exciton radiative lifetime of bright (0.37...0.58 ns) and dark (3.2...6.7 ns) states, the quantum efficiency (0.89...0.92), and the oscillator strength (11.2...17.1) are determined as a function of the dot size. The experimental data are interpreted by comparison with an atomistic model.

3.
Nanomaterials (Basel) ; 11(3)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33802007

RESUMO

Epitaxially grown quantum dots (QDs) are established as quantum emitters for quantum information technology, but their operation under ambient conditions remains a challenge. Therefore, we study photoluminescence (PL) emission at and close to room temperature from self-assembled strain-free GaAs quantum dots (QDs) in refilled AlGaAs nanoholes on (001)GaAs substrate. Two major obstacles for room temperature operation are observed. The first is a strong radiative background from the GaAs substrate and the second a significant loss of intensity by more than four orders of magnitude between liquid helium and room temperature. We discuss results obtained on three different sample designs and two excitation wavelengths. The PL measurements are performed at room temperature and at T = 200 K, which is obtained using an inexpensive thermoelectric cooler. An optimized sample with an AlGaAs barrier layer thicker than the penetration depth of the exciting green laser light (532 nm) demonstrates clear QD peaks already at room temperature. Samples with thin AlGaAs layers show room temperature emission from the QDs when a blue laser (405 nm) with a reduced optical penetration depth is used for excitation. A model and a fit to the experimental behavior identify dissociation of excitons in the barrier below T = 100 K and thermal escape of excitons from QDs above T = 160 K as the central processes causing PL-intensity loss.

4.
Sci Rep ; 11(1): 7821, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33837235

RESUMO

In this work we present a method to dynamically control the propagation of spin-wave packets. By altering an external magnetic field the refraction of the spin wave at a temporal inhomogeneity is enabled. Since the inhomogeneity is spatially invariant, the spin-wave impulse remains conserved while the frequency is shifted. We demonstrate the stopping and rebound of a traveling Backward-Volume type spin-wave packet.

5.
Langmuir ; 34(4): 1528-1534, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29261324

RESUMO

Here we present a designer's approach to building cellular neuronal networks based on a biocompatible negative photoresist with embedded coaxial feedthroughs made of semiconductor microtubes. The diameter of the microtubes is tailored and adjusted to the diameter of cerebellum axons having a diameter of 2-3 µm. The microtubes as well as the SU-8 layer serve as a topographical cue to the axons. Apart from the topographical guidance, we also employ chemical guidance cues enhancing neuron growth at designed spots. Therefore, the amino acid poly-l-lysine is printed in droplets of pl volume in the front of the tube entrances. Our artificial neuronal network has an extremely high yield of 85% of the somas settled at the desired locations. We complete this by basic patch-clamp measurements on single cells within the neuronal network.

6.
Sci Rep ; 7: 41584, 2017 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-28134293

RESUMO

We present a radio-frequency impedance-based biosensor embedded inside a semiconductor microtube for the in-flow detection of single cells. An impedance-matched tank circuit and a tight wrapping of the electrodes around the sensing region, which creates a close, leakage current-free contact between cells and electrodes, yields a high signal-to-noise ratio. We experimentally show a twofold improved sensitivity of our three-dimensional electrode structure to conventional planar electrodes and support these findings by finite element simulations. Finally, we report on the differentiation of polystyrene beads, primary mouse T lymphocytes and Jurkat T lymphocytes using our device.


Assuntos
Técnicas Biossensoriais , Impedância Elétrica , Citometria de Fluxo , Semicondutores , Citometria de Fluxo/instrumentação , Citometria de Fluxo/métodos , Humanos , Modelos Teóricos , Linfócitos T/metabolismo
7.
Sci Rep ; 6: 33169, 2016 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-27650652

RESUMO

In this work, we present the focusing of a Damon-Eshbach wave in a Ni80Fe20 film by a shaped, discrete transition of the film thickness. We devised an algorithm to determine the required shape of a spin-wave lens. Due to the anisotropy three geometries qualify as plano-convex lenses. One lens geometry has been realized experimentally and the emitted spin-wave pattern is investigated by time-resolved scanning Kerr microscopy.

8.
Nanoscale Res Lett ; 11(1): 428, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27671015

RESUMO

Self-assembled nanoholes are drilled into (001) AlGaAs surfaces during molecular beam epitaxy (MBE) using local droplet etching (LDE) with Al droplets. It is known that this process requires a small amount of background arsenic for droplet material removal. The present work demonstrates that the As background can be supplied by both a small As flux to the surface as well as by the topmost As layer in an As-terminated surface reconstruction acting as a reservoir. We study the temperature-dependent evaporation of the As topmost layer with in situ electron diffraction and determine an activation energy of 2.49 eV. After thermal removal of the As topmost layer droplet etching is studied under well-defined As supply. We observe with decreasing As flux four regimes: planar growth, uniform nanoholes, non-uniform holes, and droplet conservation. The influence of the As supply is discussed quantitatively on the basis of a kinetic rate model.

9.
Nanoscale Res Lett ; 11(1): 282, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27255902

RESUMO

Strain-free epitaxial quantum dots (QDs) are fabricated by a combination of Al local droplet etching (LDE) of nanoholes in AlGaAs surfaces and subsequent hole filling with GaAs. The whole process is performed in a conventional molecular beam epitaxy (MBE) chamber. Autocorrelation measurements establish single-photon emission from LDE QDs with a very small correlation function g ((2))(0)≃ 0.01 of the exciton emission. Here, we focus on the influence of the initial hole depth on the QD optical properties with the goal to create deep holes suited for filling with more complex nanostructures like quantum dot molecules (QDM). The depth of droplet etched nanoholes is controlled by the droplet material coverage and the process temperature, where a higher coverage or temperature yields deeper holes. The requirements of high quantum dot uniformity and narrow luminescence linewidth, which are often found in applications, set limits to the process temperature. At high temperatures, the hole depths become inhomogeneous and the linewidth rapidly increases beyond 640 °C. With the present process technique, we identify an upper limit of 40-nm hole depth if the linewidth has to remain below 100 µeV. Furthermore, we study the exciton fine-structure splitting which is increased from 4.6 µeV in 15-nm-deep to 7.9 µeV in 35-nm-deep holes. As an example for the functionalization of deep nanoholes, self-aligned vertically stacked GaAs QD pairs are fabricated by filling of holes with 35 nm depth. Exciton peaks from stacked dots show linewidths below 100 µeV which is close to that from single QDs.

10.
Nat Nanotechnol ; 10(10): 854-8, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26280407

RESUMO

Rectification of thermal fluctuations in mesoscopic conductors is the key idea behind recent attempts to build nanoscale thermoelectric energy harvesters to convert heat into useful electric power. So far, most concepts have made use of the Seebeck effect in a two-terminal geometry, where heat and charge are both carried by the same particles. Here, we experimentally demonstrate the working principle of a new kind of energy harvester, proposed recently, using two capacitively coupled quantum dots. We show that, due to the novel three-terminal design of our device, which spatially separates the heat reservoir from the conductor circuit, the directions of charge and heat flow become decoupled. This enables us to manipulate the direction of the generated charge current by means of external gate voltages while leaving the direction of heat flow unaffected. Our results pave the way for a new generation of multi-terminal nanoscale heat engines.

11.
Nanoscale Res Lett ; 10: 67, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25852364

RESUMO

Local droplet etching (LDE) utilizes metal droplets during molecular beam epitaxy for the self-assembled drilling of nanoholes into III/V semiconductor surfaces. An essential process during LDE is the removal of the deposited droplet material from its initial position during post-growth annealing. This paper studies the droplet material removal experimentally and discusses the results in terms of a simple model. The first set of experiments demonstrates that the droplet material is removed by detachment of atoms and spreading over the substrate surface. Further experiments establish that droplet etching requires a small arsenic background pressure to inhibit re-attachment of the detached atoms. Surfaces processed under completely minimized As pressure show no hole formation but instead a conservation of the initial droplets. Under consideration of these results, a simple kinetic scaling model of the etching process is proposed that quantitatively reproduces experimental data on the hole depth as a function of the process temperature and deposited amount of droplet material. Furthermore, the depth dependence of the hole side-facet angle is analyzed.

12.
Nanoscale Res Lett ; 9(1): 285, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24948902

RESUMO

We describe a method to control the shape of nanoholes in GaAs (001) which combines the technique of local droplet etching using Ga droplets with long-time thermal annealing. The cone-like shape of inverted nanoholes formed by droplet etching is transformed during long-time annealing into widened holes with flat bottoms and reduced depth. This is qualitatively understood using a simplified model of mass transport incorporating surface diffusion and evaporation. The hole diameter can be thermally controlled by varying the annealing time or annealing temperature which provides a method for tuning template morphology for subsequent nanostructure nucleation. We also demonstrate the integration of the combined droplet/thermal etching process with heteroepitaxy by the thermal control of hole depth in AlGaAs layers.

13.
Phys Rev Lett ; 104(3): 037205, 2010 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-20366680

RESUMO

We have investigated spin-wave excitations in rolled-up Permalloy microtubes using microwave absorption spectroscopy. We find a series of quantized azimuthal modes which arise from the constructive interference of Damon-Eshbach-type spin waves propagating around the circumference of the microtubes, forming a spin-wave resonator. The mode spectrum can be tailored by the tube's radius and number of rolled-up layers.

14.
Nano Lett ; 7(9): 2701-6, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17663588

RESUMO

We investigate correlation effects in the regime of a few electrons in uncapped InAs quantum dots by tunneling spectroscopy and wave function (WF) mapping at high tunneling currents where electron-electron interactions become relevant. Four clearly resolved states are found, whose approximate symmetries are roughly s and p, in order of increasing energy. Because the major axes of the p-like states coincide, the WF sequence is inconsistent with the imaging of independent-electron orbitals. The results are explained in terms of many-body tunneling theory, by comparing measured maps with those calculated by taking correlation effects into account.


Assuntos
Cristalização/métodos , Modelos Teóricos , Pontos Quânticos , Simulação por Computador , Condutividade Elétrica , Transporte de Elétrons , Teste de Materiais , Conformação Molecular , Nanotecnologia/métodos , Tamanho da Partícula , Estatística como Assunto
15.
Phys Rev Lett ; 91(19): 196804, 2003 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-14611601

RESUMO

Scanning tunneling spectroscopy is used to investigate the single-electron states and the corresponding squared wave functions of single and freestanding strain-induced InAs quantum dots grown on GaAs(001). Several peaks are found in dI/dV curves, which belong to different single-electron states. Spatially resolved dI/dV images reveal (000), (100), (010), (200), and (300) states, where the numbers describe the number of nodes in [11;0], [110], and [001] directions, respectively. The total number and energetic sequence of states is different for different dots. Interestingly, the (010) state is often missing, even when (200) and (300) states are present. We interpret this anisotropy in electronic structure as a consequence of the shape asymmetry of the dots.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...