Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mater Chem B ; 8(35): 8050-8060, 2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32780061

RESUMO

Long range electrical conduction in biomaterials is an increasingly active area of research, which includes systems such as the conductive pili, proteins, biomacromolecules, biocompatible conductive polymers and their derivatives. One material of particular interest, the human skin pigment melanin, is a long range proton conductor and recently demonstrated as capable of proton-to-electron transduction in a solid-state electrochemical transistor platform. In this work, a novel "doping strategy" is proposed to enhance and control melanin's proton conductivity, potentially enhancing its utility as a transducing material. By chelating the transition metal ion Cu(ii) into the bio-macromolecular matrix, free proton concentration and hence conductivity can be modulated. We confirm these observations by demonstrating enhanced performance in a next generation electrochemical transistor. Finally, the underlying mechanism is investigated via the use of a novel in situ hydration-controlled electron paramagnetic resonance study, deducing that the enhanced proton concentration is due to controlling the internal solid-state redox chemistry of the intrinsic polyindolequinone structure. This doping strategy should be open to any transition metal ions that bind to hydroquinone systems (e.g. polydopamine). As such, the tailoring strategy could make other soft solid-state ionic systems more accessible to applications in bioelectronics, leading to the creation of higher performance ion-electron coupled devices.


Assuntos
Cobre/química , Engenharia , Melaninas/química , Prótons , Eletroquímica , Transporte de Elétrons , Hidroquinonas/química
2.
Dalton Trans ; 48(41): 15501-15514, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31304485

RESUMO

The copper coordination chemistry of N2S2 Schiff base ligands derived from acetylacetone and S-methyl or S-benzyl dithiocarbazate (H3acacsR, R = Me, Bn) reveals a rich variety of products depending on the reaction conditions. The free ligands spontaneously cyclise to their pyrazoline isomers but ring-open upon complexation with CuII. In the absence of oxygen, the ligands form CuIIN2S2 complexes ([CuII(HacacsR)]) that have been characterised electrochemically, spectroscopically and structurally. Intermediates in the complexation reaction are observed with time-resolved UV-Vis spectroscopy. Upon exposure to air, a number of different complexes are formed. Facile oxidation of [CuII(HacacsR)] to the trivalent analogue [CuIII(acacsR)] occurs in air. This compound is the precursor to two further oxidation reactions; one to the ketone [CuII(acacsRO)] where a carbonyl group has been installed at the apical C atom of the acetylacetone moiety and another to afford the novel dinuclear complex [(CuIII(acacsR))2]. The presence of excess base (Et3N) favours formation of the dimer.

3.
Sci Adv ; 4(3): eaaq1293, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29600273

RESUMO

Melanin is the primary photoprotecting pigment in humans as well as being implicated in the development of deadly melanoma. The material also conducts electricity and has thus become a bioelectronic model for proton-to-electron transduction. Central to these phenomena are its spin properties-notably two linked species derived from carbon-centered and semiquinone radicals. Using a novel in situ photoinduced electron paramagnetic resonance technique with simultaneous electrical measurements, we have elucidated for the first time the distinct photoreactivity of the two different radical species. We find that the production of the semiquinone is light- and water-driven, explaining the electrical properties and revealing biologically relevant photoreactivity.


Assuntos
Radicais Livres/química , Luz , Melaninas/química , Espectroscopia de Ressonância de Spin Eletrônica , Fatores de Tempo , Vácuo
4.
Inorg Chem ; 56(10): 5577-5585, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28240882

RESUMO

Tolyporphins are glycosylated macrocycles isolated from lipophilic soil extracts of the cyanobacterium, Tolypothrix nodosa, and found to potentiate the cytotoxicity of antitumor drugs like vinblastine and adriamycin. Here we find that, unlike porphyrins, tolyporphins are not able to form complexes with most metal ions. However, they do react strongly with copper(II) and silver(II), forming square-planar metal complexes with an unpaired electron in a dx2-y2 orbital of the metal delocalized onto the ligating tolyporphin nitrogen atoms. Complexes were characterized by visible absorption spectra, mass spectrometry (EI, FAB, ESI, LDI-TOF, and MALDI-TOF) and multifrequency continuous-wave electron paramagnetic resonance spectra. Copper(II) and silver(II) complexes of tolyporphins A and E were found to have the interesting property of reversing multidrug resistance (MDR), with the copper complexes being less toxic than free tolyporphins. Reactive oxygen-free radicals were implicated in both the cytotoxic and MDR-reversing effects of free and metalated tolyporphins.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Cobre/farmacologia , Cianobactérias/química , Compostos Macrocíclicos/farmacologia , Porfirinas/farmacologia , Prata/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Sítios de Ligação , Proliferação de Células/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Cobre/química , Relação Dose-Resposta a Droga , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Compostos Macrocíclicos/química , Estrutura Molecular , Porfirinas/química , Prata/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
5.
Dalton Trans ; 45(47): 18931-18945, 2016 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-27841434

RESUMO

The patellamides (cyclic pseudo-octapeptides) are produced by Prochloron, a symbiont of the ascidians, marine invertebrate filter feeders. These pseudo-octapeptides are present in the cytoplasm and a possible natural function of putative metal complexes of these compounds is hydrolase activity, however the true biological role is still unknown. The dinuclear CuII complexes of synthetic patellamide derivatives have been shown in in vitro experiments to be efficient hydrolase model catalysts. Many hydrolase enzymes, specifically phosphatases and carboanhydrases, are ZnII-based enzymes and therefore, we have studied the ZnII and mixed ZnII/CuII solution chemistry of a series of synthetic patellamide derivatives, including solution structural and computational work, with the special focus on model phosphatase chemistry with bis-(2,4-dinitrophenyl)phosphate (BDNPP) as the substrate. The ZnII complexes of a series of ligands are shown to form complexes of similar structure and stability compared to the well-studied CuII analogues and the phosphatase reactivities are also similar. Since the complex stabilities and phosphatase activities are generally a little lower compared to those of CuII and since the concentration of ZnII in Prochloron cells is slightly smaller, we conclude that the CuII complexes of the patellamides are more likely to be of biological importance.


Assuntos
Complexos de Coordenação/química , Cobre/química , Organofosfatos/química , Peptídeos Cíclicos/química , Monoéster Fosfórico Hidrolases/química , Zinco/química , Modelos Moleculares
6.
J Inorg Biochem ; 162: 309-318, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27112898

RESUMO

By attaching a sulfur substrate to a conserved cysteine of the SoxYZ carrier protein SoxAX cytochromes initiate the reaction cycle of the Sox (sulfur oxidation) multienzyme complex, which is the major pathway for microbial reoxidation of sulfur compounds in the environment. Despite their important role in this process, the reaction mechanism of the SoxAX cytochromes has not been fully elucidated. Here we report the effects of several active site mutations on the spectroscopic and enzymatic properties of the type II SoxAX protein from Starkeya novella, which in addition to two heme groups also contains a Cu redox centre. All substituted proteins contained these redox centres except for His231Ala which was unable to bind Cu(II). Substitution of the SoxA active site heme cysteine ligand with histidine resulted in increased microheterogeneity around the SoxA heme as determined by CW-EPR, while a SnSoxAXC236A substituted protein revealed a completely new, nitrogenous SoxA heme ligand. The same novel ligand was present in SnSoxAXH231A CW-EPR spectra, the first time that a ligand switch of the SoxA heme involving a nearby amino acid has been demonstrated. Kinetically, SnSoxAXC236A and SnSoxAXC236H showed reduced turnover, and in assays containing SoxYZ these mutants retained only ~25% of the wildtype activity. Together, these data indicate that the Cu redox centre can mediate a low level of activity, and that a possible ligand switch can occur during catalysis. It also appears that the SoxA heme cysteine ligand (and possibly the low redox potential) is important for an efficient reaction with SnSoxYZ/thiosulfate.


Assuntos
Proteínas de Bactérias/química , Cisteína/química , Citocromos/química , Mutação , Rhizobiaceae/enzimologia , Rhodobacter capsulatus/enzimologia , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biocatálise , Domínio Catalítico , Clonagem Molecular , Cobre/química , Cobre/metabolismo , Cisteína/metabolismo , Citocromos/genética , Citocromos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Heme/química , Heme/metabolismo , Cinética , Ligantes , Oxirredução , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rhizobiaceae/genética , Rhodobacter capsulatus/genética , Relação Estrutura-Atividade , Tiossulfatos/química , Tiossulfatos/metabolismo
7.
Biochim Biophys Acta ; 1860(1 Pt A): 57-66, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26475641

RESUMO

BACKGROUND: Neuropeptides with an Amino Terminal Cu(II), Ni(II) Binding (ATCUN) motif (H2N-xxH) bind Cu(II)/Ni(II) ions. Here we report the novel discovery of a neuropeptide precursor that gives rise to a "cocktail" of peptides that bind Cu(II)/Ni(II) and form ternary complexes--the L-type SALMFamide precursor in the starfish Asterias rubens. METHODS: Echinoderm transcriptome sequence data were analysed to identify transcripts encoding precursors of SALMFamide-type neuropeptides. The sequence of the L-type SALMFamide precursor in the starfish Asterias rubens was confirmed by cDNA sequencing and peptides derived from this precursor (e.g. AYHSALPF-NH2, GYHSGLPF-NH2 and LHSALPF-NH2) were synthesized. The ability of these peptides to bind metals was investigated using UV/Vis, NMR, circular dichroism and EPR spectroscopy. RESULTS: AYHSALPF-NH2 and GYHSGLPF-NH2 bind Cu(II) and Ni(II) and generate metal-linked dimers to form ternary complexes with LHSALPF-NH2. Investigation of the evolutionary history of the histidine residue that confers these properties revealed that it can be traced to the common ancestor of echinoderms, which is estimated to have lived ~500 million years ago. However, L-type precursors comprising multiple SALMFamides with the histidine residue forming an ATCUN motif appears to be a feature that has evolved uniquely in starfish (Asteroidea). GENERAL SIGNIFICANCE: The discovery of a SALMFamide-type neuropeptide precursor protein that gives rise to a "cocktail" of peptides that bind metal ions and generate metal-linked dimers provides a new insight on ATCUN motif-containing neuropeptides. This property of L-type SALMFamides in the Asteroidea may be associated with a role in regulation of the unusual extra-oral feeding behaviour of starfish.


Assuntos
Cobre/química , Neuropeptídeos/química , Multimerização Proteica , Precursores de Proteínas/química , Sequência de Aminoácidos , Animais , Dicroísmo Circular , Espectroscopia de Ressonância de Spin Eletrônica , Dados de Sequência Molecular , Estrelas-do-Mar
8.
Elife ; 4: e09066, 2015 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-26687009

RESUMO

Interprotein electron transfer underpins the essential processes of life and relies on the formation of specific, yet transient protein-protein interactions. In biological systems, the detoxification of sulfite is catalyzed by the sulfite-oxidizing enzymes (SOEs), which interact with an electron acceptor for catalytic turnover. Here, we report the structural and functional analyses of the SOE SorT from Sinorhizobium meliloti and its cognate electron acceptor SorU. Kinetic and thermodynamic analyses of the SorT/SorU interaction show the complex is dynamic in solution, and that the proteins interact with Kd = 13.5 ± 0.8 µM. The crystal structures of the oxidized SorT and SorU, both in isolation and in complex, reveal the interface to be remarkably electrostatic, with an unusually large number of direct hydrogen bonding interactions. The assembly of the complex is accompanied by an adjustment in the structure of SorU, and conformational sampling provides a mechanism for dissociation of the SorT/SorU assembly.


Assuntos
Proteínas de Bactérias/metabolismo , Transporte de Elétrons , Oxirredutases/metabolismo , Sinorhizobium meliloti/metabolismo , Sulfitos/metabolismo , Proteínas de Bactérias/química , Cristalografia por Raios X , Cinética , Modelos Moleculares , Oxirredução , Oxirredutases/genética , Ligação Proteica , Conformação Proteica , Sinorhizobium meliloti/química , Termodinâmica
9.
Chemistry ; 21(50): 18269-79, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26577705

RESUMO

Complexation studies of the dinucleating ligand H3 L (H3 L=2-{[bis(pyridin-2-ylmethyl)amino]methyl}-6-{[bis(6-pivaloylamidopyridin-2-ylmethyl)amino]methyl}-4-methylphenol), with metal-binding sites A and B, which both provide four donors to a metal ion; a tertiary amine; two pyridines (substituted with amide hydrogen-bond donors in site B), and a bridging phenolate, with Zn(II) , Cu(II) , and Ga(III) are reported. The titration of H3 L with the three metal ions in solution was monitored by NMR spectroscopy or EPR and UV/Vis/near-IR spectroscopy, as well as by ESI-MS to analyze the selectivity of the two metal-ion sites A and B of this model ligand for metallophosphatases; the spectroscopic assignments are supported by X-ray crystallography results. The first Zn(II) ion coordinates to site A with unsubstituted pyridine donors and, upon addition of a second equivalent of Zn(II) , this coordinates to the sterically less accessible site B. From a similar titration with Ga(III) , it emerges that only a mononuclear complex is obtained, with the Ga(III) center coordinated to site A. When one equivalent of Ga(III) is reacted with the mononuclear Zn(II) complex, Zn(II) is forced by Ga(III) to exchange the site; this results in a dinuclear complex with Ga(III) in site A and Zn(II) in site B. With Cu(II) , two isomers are observed: one with and the other without a bridging phenolate; these differ significantly in their spectroscopic and magnetic properties.

10.
J Phys Chem B ; 119(48): 14994-5000, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26580677

RESUMO

Melanins are pigmentary macromolecules found in many locations throughout nature including plants and vertebrate animals. It was recently proposed that the predominant brown-black pigment eumelanin is a mixed ionic-electronic conductor which has led to renewed interest in its basic properties as a model bioelectronic material. This exotic hybrid electrical behavior is strongly dependent upon hydration and is closely related to the free radical content of melanin which is believed to be a mixed population of two species: the semiquinone (SQ) and a carbon-centered radical (CCR). The predominant charge carrier is the proton that is released during the formation of the SQ radical and controlled by a comproportionation equilibrium reaction. In this paper we present a combined solid-state electron paramagnetic resonance (EPR), adsorption, and hydrated conductivity study using D2O as a probe. We make specific predictions as to how the heavy isotope effect, in contrast to H2O, should perturb the comproportionation equilibrium and the related outcome as far as the electrical conductivity is concerned. Our EPR results confirm the proposed two-spin mechanism and clearly demonstrate the power of combining macroscopic measurements with observations from mesoscopic probes for the study of bioelectronic materials.


Assuntos
Óxido de Deutério/química , Melaninas/química , Condutividade Elétrica , Espectroscopia de Ressonância de Spin Eletrônica , Radicais Livres/química , Estrutura Molecular
11.
Inorg Chem ; 54(15): 7249-63, 2015 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-26196255

RESUMO

The active site of mammalian purple acid phosphatases (PAPs) have a dinuclear iron site in two accessible oxidation states (Fe(III)2 and Fe(III)Fe(II)), and the heterovalent is the active form, involved in the regulation of phosphate and phosphorylated metabolite levels in a wide range of organisms. Therefore, two sites with different coordination geometries to stabilize the heterovalent active form and, in addition, with hydrogen bond donors to enable the fixation of the substrate and release of the product, are believed to be required for catalytically competent model systems. Two ligands and their dinuclear iron complexes have been studied in detail. The solid-state structures and properties, studied by X-ray crystallography, magnetism, and Mössbauer spectroscopy, and the solution structural and electronic properties, investigated by mass spectrometry, electronic, nuclear magnetic resonance (NMR), electron paramagnetic resonance (EPR), and Mössbauer spectroscopies and electrochemistry, are discussed in detail in order to understand the structures and relative stabilities in solution. In particular, with one of the ligands, a heterovalent Fe(III)Fe(II) species has been produced by chemical oxidation of the Fe(II)2 precursor. The phosphatase reactivities of the complexes, in particular, also of the heterovalent complex, are reported. These studies include pH-dependent as well as substrate concentration dependent studies, leading to pH profiles, catalytic efficiencies and turnover numbers, and indicate that the heterovalent diiron complex discussed here is an accurate PAP model system.


Assuntos
Fosfatase Ácida/química , Fosfatase Ácida/metabolismo , Glicoproteínas/química , Glicoproteínas/metabolismo , Biocatálise , Domínio Catalítico , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Ferro/química , Cinética , Modelos Moleculares , Compostos Organometálicos/química , Compostos Organometálicos/metabolismo
12.
Inorg Chem ; 53(23): 12323-36, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25393875

RESUMO

Three synthetic analogues of westiallamide, H3L(wa), have previously been synthesized (H3L(1-3)) that have a common backbone (derived from l-valine) with H3L(wa) but differ in their heterocyclic rings (imidazole, oxazole, thiazole, and oxazoline). Herein we explore in detail through high-resolution pulsed electron paramagnetic resonance (EPR) and magnetic circular dichroism (MCD) spectroscopy in conjunction with density functional theory (DFT) the geometric and electronic structures of the mono- and dinuclear Cu(II) complexes of these cyclic pseudo hexapeptides. Orientation-selective hyperfine sublevel correlation, electron nuclear double resonance, and three-pulse electron spin echo envelope modulation spectroscopy of [Cu(II)(H2L(1))(MeOH)2](+) reveal delocalization of the unpaired electron spin onto the ligating and distal nitrogens of the coordinated heterocyclic rings and that they are magnetically inequivalent. DFT calculations confirm this and show similar spin densities on the distal heteroatoms in the heterocyclic rings coordinated to the Cu(II) ion in the other cyclic pseudo hexapeptide [Cu(II)(H2L(2,3,wa))(MeOH)2](+) complexes. The magnetic inequivalencies in [Cu(II)(H2L(1))(MeOH)2](+) arise from different orientations of the heterocyclic rings coordinated to the Cu(II) ion, and the delocalization of the unpaired electron onto the distal heteroatoms within these N-methylimidazole rings depends upon their location with respect to the Cu(II) d(x(2)-y(2)) orbital. A systematic study of DFT functionals and basis sets was undertaken to examine the ability to reproduce the experimentally determined spin Hamiltonian parameters. Inclusion of spin-orbit coupling (SOC) using MAG-ReSpect or ORCA with a BHLYP/IGLO-II Wachters setup with SOC corrections and ∼38% Hartree-Fock exchange gave the best predictions of the g and A((63)Cu) matrices. DFT calculations of the (14)N hyperfine and quadrupole parameters for the distal nitrogens of the coordinated heterocyclic rings in [Cu(II)(H2L(1))(MeOH)2](+) with the B1LYP functional and the SVP basis set were in excellent agreement with the experimental data, though other choices of functional and basis set also provided reasonable values. MCD, EPR, mass spectrometry, and DFT showed that preparation of the dinuclear Cu(II) complex in a 1:1 MeOH/glycerol mixture (necessary for MCD) resulted in the exchange of the bridging methoxide ligand for glycerol with a corresponding decrease in the magnitude of the exchange coupling.


Assuntos
Cobre/química , Imidazóis/química , Peptídeos Cíclicos/química , Fenômenos Eletromagnéticos , Modelos Moleculares , Estrutura Molecular , Espectrometria de Massas por Ionização por Electrospray
13.
Chemistry ; 20(43): 14026-31, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-25204830

RESUMO

We demonstrate a new approach to manipulate the selective emission in mixed electrogenerated chemiluminescence (ECL) systems, where subtle changes in co-reactant properties are exploited to control the relative electron-transfer processes of excitation and quenching. Two closely related tertiary-amine co-reactants, tri-n-propylamine and N,N-diisopropylethylamine, generate remarkably different emission profiles: one provides distinct green and red ECL from [Ir(ppy)3] (ppy=2-phenylpyridinato-C2,N) and a [Ru(bpy)3](2+) (bpy=2,2'-bipyridine) derivative at different applied potentials, whereas the other generates both emissions simultaneously across a wide potential range. These phenomena can be rationalized through the relative exergonicities of electron-transfer quenching of the excited states, in conjunction with the change in concentration of the quenchers over the applied potential range.


Assuntos
2,2'-Dipiridil/química , Etilaminas/química , Irídio/química , Propilaminas/química , Rutênio/química , Cor , Técnicas Eletroquímicas , Luminescência , Medições Luminescentes
14.
Phys Chem Chem Phys ; 16(17): 7799-812, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24643307

RESUMO

We report the first (55)Mn pulsed ENDOR studies on the S2 state multiline spin ½ centre of the oxygen evolving complex (OEC) in Photosystem II (PS II), at temperatures below 4.2 K. These were performed on highly active samples of spinach PS II core complexes, developed previously in our laboratories for photosystem spectroscopic use, at temperatures down to 2.5 K. Under these conditions, relaxation effects which have previously hindered observation of most of the manganese ENDOR resonances from the OEC coupled Mn cluster are suppressed. (55)Mn ENDOR hyperfine couplings ranging from ∼50 to ∼680 MHz are now seen on the S2 state multiline EPR signal. These, together with complementary high resolution X-band CW EPR measurements and detailed simulations, reveal that at least two and probably three Mn hyperfine couplings with large anisotropy are seen, indicating that three Mn(III) ions are likely present in the functional S2 state of the enzyme. This suggests a low oxidation state paradigm for the OEC (mean Mn oxidation level 3.0 in the S1 state) and unexpected Mn exchange coupling in the S2 state, with two Mn ions nearly magnetically silent. Our results rationalize a number of previous ligand ESEEM/ENDOR studies and labelled water exchange experiments on the S2 state of the photosystem, in a common picture which is closely consistent with recent photo-assembly (Kolling et al., Biophys. J. 2012, 103, 313-322) and large scale computational studies on the OEC (Gatt et al., Angew. Chem., Int. Ed. 2012, 51, 12025-12028, Kurashige et al. Nat. Chem. 2013, 5, 660-666).


Assuntos
Oxigênio/química , Complexo de Proteína do Fotossistema II/química , Spinacia oleracea/enzimologia , Espectroscopia de Ressonância de Spin Eletrônica , Elétrons , Manganês/química , Oxirredução , Spinacia oleracea/química
15.
Dalton Trans ; 43(5): 1935-56, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24202205

RESUMO

Cyclic pseudo-peptides derived from marine metabolites of the genus Lissoclinum bistratum and Lissoclinum patella have attracted scientific interest in the last two decades. Their structural properties and solution dynamics have been analyzed in detail, elaborate synthetic procedures for the natural products and synthetic derivatives developed, the biosynthetic pathways studied and it now is possible to produce them biosynthetically. Initially, these macrocyclic ligands were studied due to their medicinal and pharmaceutical potential - some of the isolated cyclic pseudo-peptides show high cytotoxic and antiviral activity. A major focus in the last decade has been on their Cu(II) coordination chemistry, as a number of studies have indicated that dinuclear Cu(II) complexes of cyclic peptides may be involved in the ascidians' metabolism, and this is the focus of the present review.


Assuntos
Complexos de Coordenação/química , Cobre/química , Peptídeos Cíclicos/química , Urocordados/química , Animais , Sítios de Ligação , Complexos de Coordenação/metabolismo , Modelos Moleculares , Peptídeos Cíclicos/metabolismo
16.
Dalton Trans ; 43(8): 3144-52, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24326405

RESUMO

The dicopper(II) complexes of six pseudo-octapeptides, synthetic analogues of ascidiacyclamide and the patellamides, found in ascidians of the Pacific and Indian Oceans, are shown to be efficient carbonic anhydrase model complexes with k(cat) up to 7.3 × 10(3) s(-1) (uncatalyzed: 3.7 × 10(-2) s(-1); enzyme-catalyzed: 2 × 10(5)-1.4 × 10(6) s(-1)) and a turnover number (TON) of at least 1700, limited only by the experimental conditions used. So far, no copper-based natural carbonic anhydrases are known, no faster model systems have been described and the biological role of the patellamide macrocycles is so far unknown. The observed CO2 hydration rates depend on the configuration of the isopropyl side chains of the pseudo-octapeptide scaffold, and the naturally observed R*,S*,R*,S* geometry is shown to lead to more efficient catalysts than the S*,S*,S*,S* isomers. The catalytic efficiency also depends on the heterocyclic donor groups of the pseudo-octapeptides. Interestingly, the dicopper(II) complex of the ligand with four imidazole groups is a more efficient catalyst than that of the close analogue of ascidiacyclamide with two thiazole and two oxazoline rings. The experimental observations indicate that the nucleophilic attack of a Cu(II)-coordinated hydroxide at the CO2 carbon center is rate determining, i.e. formation of the catalyst-CO2 adduct and release of carbonate/bicarbonate are relatively fast processes.


Assuntos
Anidrases Carbônicas/metabolismo , Complexos de Coordenação/metabolismo , Cobre/química , Peptídeos Cíclicos/química , Anidrases Carbônicas/química , Catálise , Complexos de Coordenação/química , Imidazóis/química , Cinética , Ligantes , Modelos Moleculares , Estereoisomerismo , Tiazóis/química
17.
ACS Chem Neurosci ; 4(10): 1371-81, 2013 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-23875773

RESUMO

Neurokinin B (NKB) is a member of the tachykinin family of neuropeptides that have neuroinflammatory, neuroimmunological, and neuroprotective functions. In a neuroprotective role, tachykinins can help protect cells against the neurotoxic processes observed in Alzheimer's disease. A change in copper homeostasis is a clear feature of Alzheimer's disease, and the dysregulation may be a contributory factor in toxicity. Copper has recently been shown to interact with neurokinin A and neuropeptide γ and can lead to generation of reactive oxygen species and peptide degradation, which suggests that copper may have a place in tachykinin function and potentially misfunction. To explore this, we have utilized a range of spectroscopic techniques to show that NKB, but not substance P, can bind Cu(II) in an unusual [Cu(II)(NKB)2] neutral complex that utilizes two N-terminal amine and two imidazole nitrogen ligands (from each molecule of NKB) and the binding substantially alters the structure of the peptide. Using 1321N1 astrocytoma cells, we show that copper can enter the cells and subsequently open plasma membrane calcium channels but when bound to neurokinin B copper ion uptake is inhibited. This data suggests a novel role for neurokinin B in protecting cells against copper-induced calcium changes and implicates the peptide in synaptic copper homeostasis.


Assuntos
Doença de Alzheimer/metabolismo , Astrocitoma/química , Astrocitoma/metabolismo , Cobre/química , Neurocinina B/química , Doença de Alzheimer/patologia , Doença de Alzheimer/prevenção & controle , Astrocitoma/patologia , Linhagem Celular Tumoral , Complexos de Coordenação/química , Complexos de Coordenação/metabolismo , Cobre/metabolismo , Humanos , Neurocinina B/antagonistas & inibidores , Neurocinina B/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica
18.
J Phys Chem A ; 117(19): 3918-24, 2013 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-23676000

RESUMO

The emission of light from the permanganate-oxalate reaction enables monitoring of intermediates not accessible through traditional spectrophotometric interrogation. Despite the inherent complexity of the underlying chemical reactions and equilibria, the emission intensity-time profile was characterized by a simple model combining previously independent minimalistic descriptions of chemiluminescence and autocatalysis. The generation of the electronically excited [Mn(II)]* emitter and the acceleration of the reaction even in the presence of high initial concentrations of Mn(II) (under conditions that preclude accumulation of colloidal Mn(IV)) provide new evidence for the reduction of manganese species by a reactive radical intermediate as a supplementary positive feedback loop to the formation of Mn(II).

19.
J Phys Chem B ; 117(17): 4965-72, 2013 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-23600769

RESUMO

Melanin, the human skin pigment, is found everywhere in nature. Recently it has gained significant attention for its potential bioelectronic properties. However, there remain significant obstacles in realizing its electronic potential, in particular, the identity of the solid-state free radical in eumelanin, which has been implicated in charge transport. We have therefore undertaken a hydration-controlled continuous-wave electron paramagnetic resonance study on solid-state eumelanin. Herein we show that the EPR signal from solid-state eumelanin arises predominantly from a carbon-centered radical but with an additional semiquinone free radical component. Furthermore, the spin densities of both of these radicals can be manipulated using water and pH. In the case of the semiquinone radical, the comproportionation reaction governs the pH- and hydration-dependent behavior. In contrast, the mechanism underlying the carbon-centered radical's pH- and hydration-dependent behavior is not clear; consequently, we have proposed a new destacking model in which the intermolecular structure of melanin is disordered due to π-π destacking, brought about by the addition of water or increased pH, which increases the proportion of semiquinone radicals via the comproportionation reaction.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica , Radicais Livres/química , Melaninas/química , Elétrons , Concentração de Íons de Hidrogênio , Indóis/química , Melaninas/metabolismo , Água/química
20.
Inorg Chem ; 52(3): 1650-7, 2013 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-23324063

RESUMO

The new tribasic N(2)S(2) ligand H(3)ttfasbz has been synthesized by condensation of 4-thenoyl 2,2,2-trifluoroacetone and S-benzyl dithiocarbazate. On complexation with copper(II) acetate, spontaneous oxidation to the Cu(III) oxidation state is observed, and the complex [Cu(ttfasbz)] has been isolated and characterized structurally. Reduction to the EPR active Cu(II) analogue has been achieved chemically and also electrochemically, and in both cases, the process is totally reversible. The Cu(III/II) redox potential of the complex is remarkably low and similar to that of the ferrocenium/ferrocene couple. Further reduction to the formally monovalent (d(10)) dianion [Cu(I)(ttfasbz)](2-) may be achieved electrochemically. Computational chemistry demonstrates that the three redox states [Cu(ttfasbz)], [Cu(ttfasbz)](-), and [Cu(ttfasbz)](2-) are truly Cu(III), Cu(II), and Cu(I) complexes, respectively, and the potentially noninnocent ligand does not undergo any redox reactions.


Assuntos
Cobre/química , Hidrazinas/química , Compostos Organometálicos/química , Bases de Schiff/química , Compostos de Sulfidrila/química , Cristalografia por Raios X , Ligantes , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/síntese química , Oxirredução , Teoria Quântica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...