Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
SLAS Technol ; 22(2): 153-162, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28095176

RESUMO

Kinase profiling during drug discovery is a necessary process to confirm inhibitor selectivity and assess off-target activities. However, cost and logistical limitations prevent profiling activities from being performed in-house. We describe the development of an automated and flexible kinase profiling workflow that combines ready-to-use kinase enzymes and substrates in convenient eight-tube strips, a bench-top liquid handling device, ADP-Glo Kinase Assay (Promega, Madison, WI) technology to quantify enzyme activity, and a multimode detection instrument. Automated methods were developed for kinase reactions and quantification reactions to be assembled on a Gilson (Middleton, WI) PIPETMAX, following standardized plate layouts for single- and multidose compound profiling. Pipetting protocols were customized at runtime based on user-provided information, including compound number, increment for compound titrations, and number of kinase families to use. After the automated liquid handling procedures, a GloMax Discover (Promega) microplate reader preloaded with SMART protocols was used for luminescence detection and automatic data analysis. The functionality of the automated workflow was evaluated with several compound-kinase combinations in single-dose or dose-response profiling formats. Known target-specific inhibitions were confirmed. Novel small molecule-kinase interactions, including off-target inhibitions, were identified and confirmed in secondary studies. By adopting this streamlined profiling process, researchers can quickly and efficiently profile compounds of interest on site.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/isolamento & purificação , Inibidores Enzimáticos/metabolismo , Medições Luminescentes/métodos , Fosfotransferases/antagonistas & inibidores , Fosfotransferases/análise , Automação Laboratorial/métodos , Fluxo de Trabalho
2.
J Vis Exp ; (99): e52755, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-26068617

RESUMO

Continued advancement in pluripotent stem cell culture is closing the gap between bench and bedside for using these cells in regenerative medicine, drug discovery and safety testing. In order to produce stem cell derived biopharmaceutics and cells for tissue engineering and transplantation, a cost-effective cell-manufacturing technology is essential. Maintenance of pluripotency and stable performance of cells in downstream applications (e.g., cell differentiation) over time is paramount to large scale cell production. Yet that can be difficult to achieve especially if cells are cultured manually where the operator can introduce significant variability as well as be prohibitively expensive to scale-up. To enable high-throughput, large-scale stem cell production and remove operator influence novel stem cell culture protocols using a bench-top multi-channel liquid handling robot were developed that require minimal technician involvement or experience. With these protocols human induced pluripotent stem cells (iPSCs) were cultured in feeder-free conditions directly from a frozen stock and maintained in 96-well plates. Depending on cell line and desired scale-up rate, the operator can easily determine when to passage based on a series of images showing the optimal colony densities for splitting. Then the necessary reagents are prepared to perform a colony split to new plates without a centrifugation step. After 20 passages (~3 months), two iPSC lines maintained stable karyotypes, expressed stem cell markers, and differentiated into cardiomyocytes with high efficiency. The system can perform subsequent high-throughput screening of new differentiation protocols or genetic manipulation designed for 96-well plates. This technology will reduce the labor and technical burden to produce large numbers of identical stem cells for a myriad of applications.


Assuntos
Técnicas de Cultura de Células/métodos , Ensaios de Triagem em Larga Escala/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Robótica/métodos , Tecido Adiposo/citologia , Técnicas de Cultura de Células/instrumentação , Diferenciação Celular/fisiologia , Linhagem Celular , Fibroblastos/citologia , Ensaios de Triagem em Larga Escala/instrumentação , Humanos , Células-Tronco Pluripotentes/citologia , Robótica/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...