Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anticancer Agents Med Chem ; 17(10): 1434-1440, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28270070

RESUMO

BACKGROUND: Targeted imaging and therapy (theranostics) is a promising approach for the simultaneous improvement of cancer diagnosis, prognosis and management. Therapeutic and imaging reagents are coupled to tumor-targeting molecules such as antibodies, providing a basis for truly personalized medicine. However, the development of antibody-drug conjugates with acceptable pharmaceutical properties is a complex process and several parameters must be optimized, such as the controlled conjugation method and the drug-to-antibody ratio. OBJECTIVE: The major aim of this work is to address fundamental key challenges for the development of versatile technology platform for generating homogenous immunotheranostic reagent. METHOD: We conjugated the theranostics reagent IRDye700dx to a recombinant antibody fusion protein containing a self-labeling protein (SNAP-tag) which provides a unique reaction site. RESULTS: The resulting conjugate was suitable for the imaging of cancer cells expressing the epidermal growth factor receptor and demonstrated potent phototherapeutic and imaging activities against them. CONCLUSION: Here, we describe a simple, rapid and robust site-directed labeling method that can be used to generate homogeneous immunoconjugate with defined pharmacological properties.


Assuntos
Anticorpos/uso terapêutico , Neoplasias/tratamento farmacológico , Nanomedicina Teranóstica , Anticorpos/química , Relação Dose-Resposta a Droga , Receptores ErbB/análise , Receptores ErbB/biossíntese , Humanos , Indóis/química , Indóis/uso terapêutico , Estrutura Molecular , Compostos de Organossilício/química , Compostos de Organossilício/uso terapêutico , Fotoquimioterapia , Relação Estrutura-Atividade
2.
J Vis Exp ; (93): e52014, 2014 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-25490674

RESUMO

S-Adenosyl-l-methionine (AdoMet or SAM)-dependent methyltransferases (MTase) catalyze the transfer of the activated methyl group from AdoMet to specific positions in DNA, RNA, proteins and small biomolecules. This natural methylation reaction can be expanded to a wide variety of alkylation reactions using synthetic cofactor analogues. Replacement of the reactive sulfonium center of AdoMet with an aziridine ring leads to cofactors which can be coupled with DNA by various DNA MTases. These aziridine cofactors can be equipped with reporter groups at different positions of the adenine moiety and used for Sequence-specific Methyltransferase-Induced Labeling of DNA (SMILing DNA). As a typical example we give a protocol for biotinylation of pBR322 plasmid DNA at the 5'-ATCGAT-3' sequence with the DNA MTase M.BseCI and the aziridine cofactor 6BAz in one step. Extension of the activated methyl group with unsaturated alkyl groups results in another class of AdoMet analogues which are used for methyltransferase-directed Transfer of Activated Groups (mTAG). Since the extended side chains are activated by the sulfonium center and the unsaturated bond, these cofactors are called double-activated AdoMet analogues. These analogues not only function as cofactors for DNA MTases, like the aziridine cofactors, but also for RNA, protein and small molecule MTases. They are typically used for enzymatic modification of MTase substrates with unique functional groups which are labeled with reporter groups in a second chemical step. This is exemplified in a protocol for fluorescence labeling of histone H3 protein. A small propargyl group is transferred from the cofactor analogue SeAdoYn to the protein by the histone H3 lysine 4 (H3K4) MTase Set7/9 followed by click labeling of the alkynylated histone H3 with TAMRA azide. MTase-mediated labeling with cofactor analogues is an enabling technology for many exciting applications including identification and functional study of MTase substrates as well as DNA genotyping and methylation detection.


Assuntos
Metilases de Modificação do DNA/química , DNA/química , Proteínas Metiltransferases/química , Proteínas/química , Análise de Sequência de DNA/métodos , Análise de Sequência de Proteína/métodos , Coenzimas/química , Coenzimas/metabolismo , DNA/análise , Metilases de Modificação do DNA/metabolismo , Proteínas Metiltransferases/metabolismo , Proteínas/análise , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...