Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NPJ Sci Food ; 2: 1, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31304251

RESUMO

Triacylglycerol (TG), the main component of edible oil, is oxidized by thermal- or photo- oxidation to form TG hydroperoxide (TGOOH) as the primary oxidation product. Since TGOOH and its subsequent oxidation products cause not only the deterioration of oil quality but also various toxicities, preventing the oxidation of edible oils is essential. Therefore understanding oxidation mechanisms that cause the formation of TGOOH is necessary. Since isomeric information of lipid hydroperoxide provides insights about oil oxidation mechanisms, we focused on dioleoyl-(hydroperoxy octadecadienoyl)-TG (OO-HpODE-TG) isomers, which are the primary oxidation products of the most abundant TG molecular species (dioleoyl-linoleoyl-TG) in canola oil. To secure highly selective and sensitive analysis, authentic OO-HpODE-TG isomer references (i.e., hydroperoxide positional/geometrical isomers) were synthesized and analyzed with HPLC-MS/MS. With the use of the method, photo- or thermal- oxidized edible oils were analyzed. While dioleoyl-(10-hydroperoxy-8E,12Z-octadecadienoyl)-TG (OO-(10-HpODE)-TG) and dioleoyl-(12-hydroperoxy-9Z,13E-octadecadienoyl)-TG (OO-(12-HpODE)-TG) were characteristically detected in photo-oxidized oils, dioleoyl-(9-hydroperoxy-10E,12E-octadecadienoyl)-TG and dioleoyl-(13-hydroperoxy-9E,11E-octadecadienoyl)-TG were found to increase depending on temperature in thermal-oxidized oils. These results prove that our methods not only evaluate oil oxidation in levels that are unquantifiable with peroxide value, but also allows for the determination of oil oxidation mechanisms. From the analysis of marketed canola oils, photo-oxidized products (i.e., OO-(10-HpODE)-TG and OO-(12-HpODE)-TG) were characteristically accumulated compared to the oil analyzed immediately after production. The method described in this paper is valuable in the understanding of oil and food oxidation mechanisms, and may be applied to the development of preventive methods against food deterioration.

2.
Sci Rep ; 7(1): 10026, 2017 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-28855636

RESUMO

The elucidation of lipid oxidation mechanisms of food is vital. In certain lipids, characteristic lipid hydroperoxide isomers are formed by different oxidation mechanisms (i.e., photo-oxidation or auto-oxidation). For example, linoleic acid is photo-oxidized to 13-9Z, 11E-hydroperoxyoctadecadienoic acid (HPODE), 12-9Z,13E-HPODE, 10-8E,12Z-HPODE and 9-10E,12Z-HPODE, whereas 13-9Z, 11E-HPODE, 13-9E,11E-HPODE, 9-10E,12Z-HPODE and 9-10E,12E-HPODE are formed by auto-oxidation. Therefore, we considered that oxidation mechanisms could be evaluated by analyzing these characteristic positional and cis/trans lipid hydroperoxide isomers. In this study, we developed a novel chiral stationary phase LC-MS/MS (CSP-LC-MS/MS) method to analyze the positional and cis/trans isomers of HPODE, with the use of a chiral column and sodium ion. Also, as an application of the method, either light-exposed or heated edible oils were treated with lipase to hydrolyze triacylglycerols. The resultant fatty acids including HPODE isomers were analyzed with the developed method. As a result, HPODE isomers characteristic to photo-oxidation were certainly detected in light-exposed edible oils. On the other hand, in heated edible oils, the HPODE isomers characteristic to auto-oxidation were largely increased. Thus, the combination of the developed CSP-LC-MS/MS method with lipase proves to be a powerful tool to evaluate the involvement and mechanisms of lipid oxidation in the process of food deterioration.

3.
J Oleo Sci ; 66(4): 369-374, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-28239061

RESUMO

Mayonnaise, which is widely used in foods, is rich in lipids and therefore susceptible to oxidation during the manufacturing process, which can result in loss of quality. Herein, we detected and analyzed phosphatidylcholine hydroperoxide (PCOOH) isomers present in fresh mayonnaise using LC-MS/MS. The PCOOH isomer composition suggests that mayonnaise phospholipid peroxidation is predominantly initiated by radical-oxidation (i.e. upon autoxidation), rather than singlet oxygen-oxidation (e.g. upon light exposure), during manufacturing, packaging and/or storage. This LC-MS/MS method will be useful for elucidating the cause of lipid peroxidation in mayonnaise and related foods. Such information will be valuable to ensure maintenance of product quality.


Assuntos
Gema de Ovo/química , Peróxidos Lipídicos/química , Fosfatidilcolinas/química , Óleos de Plantas/química , Ácido Acético/química , Isomerismo , Peroxidação de Lipídeos , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...