Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 806(Pt 3): 151328, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34743876

RESUMO

Microbially influenced concrete corrosion (MICC) in sewers is caused by the activity of sulfide-oxidizing microorganisms (SOMs) on concrete surfaces, which greatly deteriorates the integrity of sewers. Surface treatment of corroded concrete by spraying chemicals is a low-cost and non-intrusive strategy. This study systematically evaluated the spray of nitrite solution in corrosion mitigation and re-establishment in a real sewer manhole. Two types of concrete were exposed at three heights within the sewer manhole for 21 months. Nitrite spray was applied at the 6th month for half of the coupons which had developed active corrosion. The corrosion development was monitored by measuring the surface pH, corrosion product composition, sulfide uptake rate, concrete corrosion loss, and the microbial community on the corrosion layer. Free nitrous acid (FNA, i.e. HNO2), formed by spraying a nitrite solution on acidic corrosion surfaces, was shown to inhibit the activity of SOMs. The nitrite spray reduced the corrosion loss of concrete at all heights by 40-90% for six months. The sulfide uptake rate of sprayed coupons was also reduced by about 35%, leading to 1-2 units higher surface pH, comparing to the control coupons. The microbial community analysis revealed a reduced abundance of SOMs on nitrite sprayed coupons. The long-term monitoring also showed that the corrosion mitigation effect became negligible in 15 months after the spray. The results consistently demonstrated the effectiveness of nitrite spray on the MICC mitigation and identified the re-application frequencies for full scale applications.


Assuntos
Sulfeto de Hidrogênio , Nitritos , Corrosão , Ácido Nitroso , Esgotos
2.
Materials (Basel) ; 14(21)2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34771779

RESUMO

Durability predictions of concrete structures are derived from experience-based requirements and descriptive exposure classes. To support durability predictions, a numerical model related to the carbonation resistance of concrete was developed. The model couples the rate of carbonation with the drying rate. This paper presents the accelerated carbonation and moisture transport experiments performed to calibrate and verify the numerical model. They were conducted on mortars with a water-cement ratio of either 0.6 or 0.5, incorporating either a novel cement CEM II/C (S-LL) (EnM group) or commercially available CEM II/A-S cement (RefM group). The carbonation rate was determined by visual assessment and thermogravimetric analysis (TGA). Moisture transport experiments, consisting of drying and resaturation, utilized the gravimetric method. Higher carbonation rates expressed in mm/day-0.5 were found in the EnM group than in the RefM group. However, the TGA showed that the initial portlandite (CH) content was lower in the EnM than in the RefM, which could explain the difference in carbonation rates. The resaturation experiments indicate an increase in the suction porosity in the carbonated specimens compared to the non-carbonated specimens. The study concludes that low clinker content causes lower resistance to carbonation, since less CH is available in the surface layers; thus, the carbonation front progresses more rapidly towards the core.

3.
Environ Sci Technol ; 54(4): 2323-2333, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31977201

RESUMO

Microbially induced concrete corrosion is a major deterioration process in sewers, causing a huge economic burden, and improved mitigating technologies are required. This study reports a novel and promising effective solution to attenuate the corrosion in sewers using calcium nitrite-admixed concrete. This strategy aims to suppress the development and activity of corrosion-inducing microorganisms with the antimicrobial free nitrous acid, which is generated in situ from calcium nitrite that is added to the concrete. Concrete coupons with calcium nitrite as an admixture were exposed in a sewer manhole, together with control coupons that had no nitrite admixture, for 18 months. The corrosion process was monitored by measuring the surface pH, corrosion product composition, concrete corrosion loss, and the microbial community on the corrosion layer. During the exposure, the corrosion loss of the admixed concrete coupons was 30% lower than that of the control coupons. The sulfide uptake rate of the admixed concrete was also 30% lower, leading to a higher surface pH (0.5-0.6 unit), in comparison to that of the control coupons. A negative correlation between the calcium nitrite admixture in concrete and the abundance of sulfide-oxidizing microorganisms was determined by DNA sequencing. The results obtained in this field study demonstrated that this novel use of calcium nitrite as an admixture in concrete is a promising strategy to mitigate the microbially induced corrosion in sewers.


Assuntos
Nitritos , Esgotos , Corrosão , Ácido Nitroso , Sulfetos
4.
Water Res ; 162: 95-104, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31255785

RESUMO

Concrete corrosion in sewers is primarily caused by H2S in sewer atmosphere. H2S concentration can vary from several ppm to hundreds of ppm in real sewers. Our understanding of sewer corrosion has increased dramatically in recent years, however, there is limited knowledge of the concrete corrosion at high H2S levels. This study examined the corrosion development in sewers with high H2S concentrations. Fresh concrete coupons, manufactured according to sewer pipe standards, were exposed to corrosive conditions in a pilot-scale gravity sewer system with gaseous H2S at 1100 ±â€¯100 ppm. The corrosion process was continuously monitored by measuring the surface pH, corrosion product composition, corrosion loss and the microbial community. The surface pH of concrete was reduced from 10.5 ±â€¯0.3 to 3.1 ±â€¯0.5 within 20 days and this coincided with a rapid corrosion rate of 3.5 ±â€¯0.3 mm year -1. Microbial community analysis based on 16S rRNA gene sequencing indicated the absence of sulfide-oxidizing microorganisms in the corrosion layer. The chemical analysis of corrosion products supported the reaction of cement with sulfuric acid formed by the chemical oxidation of H2S. The rapid corrosion of concrete in the gravity pipe was confirmed to be caused by the chemical oxidation of hydrogen sulfide at high concentrations. This is in contrast to the conventional knowledge that is focused on microbially induced corrosion. This first-ever systematic investigation shows that chemically induced oxidation of H2S leads to the rapid corrosion of new concrete sewers within a few weeks. These findings contribute novel understanding of in-sewer corrosion processes and hold profound implications for sewer operation and corrosion management.


Assuntos
Sulfeto de Hidrogênio , Esgotos , Corrosão , Concentração de Íons de Hidrogênio , RNA Ribossômico 16S
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...