Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Zhonghua Xue Ye Xue Za Zhi ; 45(1): 82-85, 2024 Jan 14.
Artigo em Chinês | MEDLINE | ID: mdl-38527843

RESUMO

Gaucher Disease (GD) is an autosomal recessive lysosomal storage disorder characterized by high heterogeneity. This study aimed to further understand the correlation between clinical phenotypes and genotypes in GD patients through a retrospective analysis of 20 cases in Shanxi Bethune Hospital, including their clinical manifestations, laboratory tests, enzyme studies, and genetic results. Among the 20 GD patients, 16 were classified as Type Ⅰ GD with a median age of diagnosis of 24 years, and 4 were classified as Type Ⅲ GD with a median age of diagnosis of 19 years. All patients exhibited splenomegaly and thrombocytopenia, with 16 patients showing skeletal imaging changes, and 5 of them presenting with bone pain symptoms. Genetic analysis revealed 15 distinct mutations, predominantly missense mutations, with L483P being the most prevalent (35.7%), followed by V414L, L303I, and F252I. Mutation sites were predominantly located in exon 7. Noteworthy findings included the first report of the S310G mutation by our research group and the first occurrence of the K196R mutation in the Chinese population. Additionally, the N227S mutation was implicated in a potential association with neuropathy. Despite advancements, Uncertainties still exist in the correlation between clinical phenotypes and genotypes in GD patients.


Assuntos
Doença de Gaucher , Humanos , Adulto Jovem , Adulto , Doença de Gaucher/genética , Estudos Retrospectivos , Fenótipo , Genótipo , Mutação
2.
Nat Nanotechnol ; 14(10): 962-966, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31477802

RESUMO

Monolayers of graphene and hexagonal boron nitride (hBN) are highly permeable to thermal protons1,2. For thicker two-dimensional (2D) materials, proton conductivity diminishes exponentially, so that, for example, monolayer MoS2 that is just three atoms thick is completely impermeable to protons1. This seemed to suggest that only one-atom-thick crystals could be used as proton-conducting membranes. Here, we show that few-layer micas that are rather thick on the atomic scale become excellent proton conductors if native cations are ion-exchanged for protons. Their areal conductivity exceeds that of graphene and hBN by one to two orders of magnitude. Importantly, ion-exchanged 2D micas exhibit this high conductivity inside the infamous gap for proton-conducting materials3, which extends from ∼100 °C to 500 °C. Areal conductivity of proton-exchanged monolayer micas can reach above 100 S cm-2 at 500 °C, well above the current requirements for the industry roadmap4. We attribute the fast proton permeation to ~5-Å-wide tubular channels that perforate micas' crystal structure, which, after ion exchange, contain only hydroxyl groups inside. Our work indicates that there could be other 2D crystals5 with similar nanometre-scale channels, which could help close the materials gap in proton-conducting applications.

3.
Nat Commun ; 10(1): 4243, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31534140

RESUMO

Defect-free monolayers of graphene and hexagonal boron nitride are surprisingly permeable to thermal protons, despite being completely impenetrable to all gases. It remains untested whether small ions can permeate through the two-dimensional crystals. Here we show that mechanically exfoliated graphene and hexagonal boron nitride exhibit perfect Nernst selectivity such that only protons can permeate through, with no detectable flow of counterions. In the experiments, we use suspended monolayers that have few, if any, atomic-scale defects, as shown by gas permeation tests, and place them to separate reservoirs filled with hydrochloric acid solutions. Protons account for all the electrical current and chloride ions are blocked. This result corroborates the previous conclusion that thermal protons can pierce defect-free two-dimensional crystals. Besides the importance for theoretical developments, our results are also of interest for research on various separation technologies based on two-dimensional materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...