Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5959, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39009629

RESUMO

Understanding the mechanisms controlling forest carbon accumulation is crucial for predicting and mitigating future climate change. Yet, it remains unclear whether the dominance of ectomycorrhizal (EcM) trees influences the carbon accumulation of entire forests. In this study, we analyzed forest inventory data from over 4000 forest plots across Northeast China. We find that EcM tree dominance consistently exerts a positive effect on tree, soil, and forest carbon stocks. Moreover, we observe that these positive effects are more pronounced during unfavorable climate conditions, at lower tree species richness, and during early successional stages. This underscores the potential of increasing the dominance of native EcM tree species not only to enhance carbon stocks but also to bolster resilience against climate change in high-latitude forests. Here we show that forest managers can make informed decisions to optimize carbon accumulation by considering various factors such as mycorrhizal types, climate, successional stages, and species richness.


Assuntos
Carbono , Mudança Climática , Florestas , Micorrizas , Solo , Árvores , Micorrizas/fisiologia , Árvores/microbiologia , Árvores/metabolismo , Carbono/metabolismo , China , Solo/química
2.
Plant Cell Environ ; 47(8): 3166-3180, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38693830

RESUMO

Urban trees possess different capacities to mitigate ozone (O3) pollution through stomatal uptake. Stomatal closure protects trees from oxidative damage but limits their growth. To date, it is unclear how plant hydraulic function affect stomatal behaviour and determine O3 resistance. We assessed gas exchange and hydraulic traits in three subtropical urban tree species, Celtis sinensis, Quercus acutissima, and Q. nuttallii, under nonfiltered ambient air (NF) and elevated O3 (NF60). NF60 decreased photosynthetic rate (An) and stomatal conductance (gs) only in Q. acutissima and Q. nuttallii. Maintained An in C. sinensis suggested high O3 resistance and was attributed to higher leaf capacitance at the full turgor. However, this species exhibited a reduced stomatal sensitivity to vapour pressure deficit and an increased minimal gs under NF60. Such stomatal dysfunction did not decrease intrinsic water use efficiency (WUE) due to a tight coupling of An and gs. Conversely, Q. acutissima and Q. nuttallii showed maintained stomatal sensitivity and increased WUE, primarily correlated with gs and leaf water relations, including relative water content and osmotic potential at turgor loss point. Our findings highlight a trade-off between O3 resistance and stomatal functionality, with efficient stomatal control reducing the risk of hydraulic failure under combined stresses.


Assuntos
Ozônio , Fotossíntese , Folhas de Planta , Estômatos de Plantas , Quercus , Árvores , Água , Ozônio/farmacologia , Estômatos de Plantas/fisiologia , Estômatos de Plantas/efeitos dos fármacos , Água/metabolismo , Água/fisiologia , Árvores/fisiologia , Árvores/efeitos dos fármacos , Folhas de Planta/fisiologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Quercus/fisiologia , Quercus/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Transpiração Vegetal/fisiologia , Transpiração Vegetal/efeitos dos fármacos
3.
Tree Physiol ; 44(7)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38602710

RESUMO

Nonstructural carbohydrates (NSC) are essential for tree growth and adaptation, yet our understanding of the seasonal storage and mobilization dynamics of whole-tree NSC is still limited, especially when tree functional types are involved. Here, Quercus acutissima Carruth. and Pinus massoniana Lamb, with distinct life-history traits (i.e. a deciduous broadleaf species vs an evergreen coniferous species), were studied to assess the size and seasonal fluctuations of organ and whole-tree NSC pools with a focus on comparing differences in carbon resource mobilization patterns between the two species. We sampled the organs (leaf, branch, stem and root) of the target trees repeatedly over four seasons of the year. Then, NSC concentrations in each organ were paired with biomass estimates from the allometric model to generate whole-tree NSC pools. The seasonal dynamics of the whole-tree NSC of Q. acutissima and P. massoniana reached the peak in autumn and summer, respectively. The starch pools of the two species were supplemented in the growing season while the soluble sugar pools were the largest in the dormant season. Seasonal dynamics of organ-level NSC concentrations and pools were affected by organ type and tree species, with above-ground organs generally increasing during the growing season and P. massoniana roots decreasing during the growing season. In addition, the whole-tree NSC pools of P. massoniana were larger but Q. acutissima showed larger seasonal fluctuations, indicating that larger storage was not associated with more pronounced seasonal fluctuations. We also found that the branch and root were the most dynamic organs of Q. acutissima and P. massoniana, respectively, and were the major suppliers of NSC to support tree growth activities. These results provide fundamental insights into the dynamics and mobilization patterns of NSC at the whole-tree level, and have important implications for investigating environmental adaptions of different tree functional types.


Assuntos
Metabolismo dos Carboidratos , Pinus , Quercus , Estações do Ano , Árvores , Quercus/crescimento & desenvolvimento , Quercus/metabolismo , Quercus/fisiologia , Pinus/crescimento & desenvolvimento , Pinus/metabolismo , Pinus/fisiologia , Árvores/crescimento & desenvolvimento , Árvores/metabolismo , Características de História de Vida , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo
4.
Plant Cell Environ ; 47(8): 2999-3014, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38644635

RESUMO

Crown removal revitalises sand-fixing shrubs that show declining vigour with age in drought-prone environments; however, the underlying mechanisms are poorly understood. Here, we addressed this knowledge gap by comparing the growth performance, xylem hydraulics and plant carbon economy across different plant ages (10, 21 and 33 years) and treatments (control and crown removal) using a representative sand-fixing shrub (Caragana microphylla Lam.) in northern China. We found that growth decline with plant age was accompanied by simultaneous decreases in soil moisture, plant hydraulic efficiency and photosynthetic capacity, suggesting that these interconnected changes in plant water relations and carbon economy were responsible for this decline. Following crown removal, quick resprouting, involving remobilisation of root nonstructural carbohydrate reserves, contributed to the reconstruction of an efficient hydraulic system and improved plant carbon status, but this became less effective in older shrubs. These age-dependent effects of carbon economy and hydraulics on plant growth vigour provide a mechanistic explanation for the age-related decline and revitalisation of sand-fixing shrubs. This understanding is crucial for the development of suitable management strategies for shrub plantations constructed with species having the resprouting ability and contributes to the sustainability of ecological restoration projects in water-limited sandy lands.


Assuntos
Carbono , Água , Xilema , Carbono/metabolismo , Água/metabolismo , Xilema/metabolismo , Xilema/crescimento & desenvolvimento , Xilema/fisiologia , Caragana/fisiologia , Caragana/crescimento & desenvolvimento , Caragana/metabolismo , Fotossíntese/fisiologia , Areia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Solo/química , China
5.
Nat Commun ; 14(1): 7885, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38036495

RESUMO

Recent studies have reported worldwide vegetation suppression in response to increasing atmospheric vapor pressure deficit (VPD). Here, we integrate multisource datasets to show that increasing VPD caused by warming alone does not suppress vegetation growth in northern peatlands. A site-level manipulation experiment and a multiple-site synthesis find a neutral impact of rising VPD on vegetation growth; regional analysis manifests a strong declining gradient of VPD suppression impacts from sparsely distributed peatland to densely distributed peatland. The major mechanism adopted by plants in response to rising VPD is the "open" water-use strategy, where stomatal regulation is relaxed to maximize carbon uptake. These unique surface characteristics evolve in the wet soil‒air environment in the northern peatlands. The neutral VPD impacts observed in northern peatlands contrast with the vegetation suppression reported in global nonpeatland areas under rising VPD caused by concurrent warming and decreasing relative humidity, suggesting model improvement for representing VPD impacts in northern peatlands remains necessary.


Assuntos
Gases , Plantas , Pressão de Vapor , Pressão Atmosférica , Carbono
6.
Ying Yong Sheng Tai Xue Bao ; 34(2): 324-332, 2023 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-36803709

RESUMO

We compared branch and leaf functional traits of Ulmus pumila trees inhabiting different climatic zones (sub-humid, dry sub-humid and semi-arid zones), aiming to investigate the role of trait plasticity and coordination in tree acclimation to different water conditions. The results showed that leaf drought stress of U. pumila increased significantly from sub-humid to semi-arid climatic zones, as indicated by a 66.5% reduction in leaf midday water potential. In the sub-humid zone with less severe drought stress, U. pumila had higher stomatal density, thinner leaves, larger average vessel diameter, pit aperture area and membrane area, which could ensure the higher potential water acquisition. With the increases of drought stress in dry sub-humid and semi-arid zones, leaf mass per area and tissue density increased, and the pit aperture area and membrane area decreased, indicating stronger drought tolerance. Across different climatic zones, the vessel and pit structural characteristics were strongly coordinated, while a trade-off between xylem theoretical hydraulic conductivity and safety index was found. The plastic adjustment and coordinated variation of anatomical, structural and physiological traits may be an important mechanism contributing to the success of U. pumila in different climate zones with contrasting water environments.


Assuntos
Ulmus , Folhas de Planta/fisiologia , Xilema/fisiologia , Aclimatação , Árvores/fisiologia , Secas , Água/fisiologia
7.
Tree Physiol ; 43(5): 722-736, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-36715627

RESUMO

In cold and humid temperate forests, low temperature, late frost and frequent freeze-thaw cycles are the main factors limiting tree growth and survival. Ring- and diffuse-porous tree species differing in xylem anatomy coexist in these forests, but their divergent adaptations to these factors have been poorly explored. To fill this knowledge gap, we compared four ring-porous and four diffuse-porous tree species from the same temperate forest in Northeast China by quantifying their leaf and stem functional traits, their stem growth rates using tree ring analysis and their resistance to cold represented by upper altitude species distribution borders from survey data. We found that the ring-porous trees were characterized by traits related to more rapid water transport, carbon gain and stem growth rates than those of the diffuse-porous species. Compared with the diffuse-porous species, the ring-porous species had a significantly higher shoot hydraulic conductance (Ks-shoot, 0.52 vs 1.03 kg m-1 s-1 MPa-1), leaf photosynthetic rate (An, 11.28 vs 15.83 µmol m-2 s-1), relative basal area increment (BAIr, 2.28 vs 0.72 cm year-1) and stem biomass increment (M, 0.34 vs 0.09 kg year-1 m-1). However, the observed upper elevational distribution limit of the diffuse-porous species was higher than that of the ring-porous species and was associated with higher values of conservative traits, such as longer leaf life span (R2 = 0.52). Correspondingly, BAIr and M showed significant positive correlations with acquisitive traits such as Ks-shoot (R2 = 0.77) and leaf photosynthetic rate (R2 = 0.73) across the eight species, with the ring-porous species occurring at the fast-acquisitive side of the spectrum and the diffuse-porous species located on the opposite side. The observed contrasts in functional traits between the two species groups improved our understanding of their differences in terms of growth strategies and adaptive capabilities in the cold, humid temperate forests.


Assuntos
Florestas , Árvores , Porosidade , Xilema , Folhas de Planta , Água
8.
Glob Chang Biol ; 29(7): 2030-2040, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36655297

RESUMO

The sequence of physiological events during drought strongly impacts plants' overall performance. Here, we synthesized the global data of stomatal and hydraulic traits in leaves and stems of 202 woody species to evaluate variations in the water potentials for key physiological events and their sequence along the climatic gradient. We found that the seasonal minimum water potential, turgor loss point, stomatal closure point, and leaf and stem xylem vulnerability to embolism were intercorrelated and decreased with aridity, indicating that water stress drives trait co-selection. In xeric regions, the seasonal minimum water potential occurred at lower water potential than turgor loss point, and the subsequent stomatal closure delayed embolism formation. In mesic regions, however, the seasonal minimum water potential did not pose a threat to the physiological functions, and stomatal closure occurred even at slightly more negative water potential than embolism. Our study demonstrates that the sequence of water potentials for physiological dysfunctions of woody plants varies with aridity, that is, xeric species adopt a more conservative sequence to prevent severe tissue damage through tighter stomatal regulation (isohydric strategy) and higher embolism resistance, while mesic species adopt a riskier sequence via looser stomatal regulation (anisohydric strategy) to maximize carbon uptake at the cost of hydraulic safety. Integrating both aridity-dependent sequence of water potentials for physiological dysfunctions and gap between these key traits into the hydraulic framework of process-based vegetation models would improve the prediction of woody plants' responses to drought under global climate change.


Assuntos
Folhas de Planta , Estômatos de Plantas , Estômatos de Plantas/fisiologia , Folhas de Planta/fisiologia , Madeira , Xilema , Árvores , Secas
9.
Plant Cell Environ ; 46(1): 106-118, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36253806

RESUMO

Xylem hydraulic characteristics govern plant water transport, affecting both drought resistance and photosynthetic gas exchange. Therefore, they play critical roles in determining the adaptation of different species to environments with various water regimes. Here, we tested the hypothesis that variation in xylem traits associated with a trade-off between hydraulic efficiency and safety against drought-induced embolism contributes to niche differentiation of tree species along a sharp water availability gradient on the slope of a unique river valley located in a semi-humid area. We found that tree species showed clear niche differentiation with decreasing water availability from the bottom towards the top of the valley. Tree species occupying different positions, in terms of vertical distribution distance from the bottom of the valley, showed a strong trade-off between xylem water transport efficiency and safety, as evidenced by variations in xylem structural traits at both the tissue and pit levels. This optimized their xylem hydraulics in their respective water regimes. Thus, the trade-off between hydraulic efficiency and safety contributes to clear niche differentiation and, thereby, to the coexistence of tree species in the valley with heterogeneous water availability.


Assuntos
Árvores , Água
10.
Sci Total Environ ; 856(Pt 1): 159017, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36167124

RESUMO

Drought combined with extreme heatwaves has been increasingly identified as the important trigger of worldwide tree mortality in the context of climate change; nonetheless, our understanding of the potential hydraulic and thermal impairments of hot droughts to trees and the subsequent post-recovery process remains limited. To investigate the response of tree water and carbon relations to drought, heatwave, and combined drought-heatwave stresses, three-year-old potted seedlings of Fraxinus mandshurica Rupr., a dominant tree species in temperate forests of northeast China, were grown under well-watered and drought-stressed conditions and exposed to a rapid, acute heatwave treatment. During the heatwave treatment with a maximum temperature exceeding 40 °C for two days, the leaf temperature of drought-stressed seedlings was, on average, 5 °C higher than that of well-watered counterparts due to less effective evaporative cooling, indicating that soil water availability influenced leaf thermoregulatory capacity during hot extremes. Consistently, more pronounced crown damage, as shown by 13 % irreversible leaf scorch, was found in seedlings under the drought-heatwave treatment relative to sole heatwave treatment, alongside the more severe stem xylem embolism and leaf electrolyte leakage. While the heatwave treatment accelerated the depletion of non-structural carbohydrates in drought-stressed seedlings, the increase of branch soluble sugar concentration in response to heatwave might be related to the requirement for maintaining hydraulic functioning via osmoregulation under high dehydration risk. The coordination between leaf stomatal conductance and total non-structural carbohydrate content during the post-heatwave recovery phase implied that plant-water relations and carbon physiology were closely coupled in coping with hot droughts. This study highlights that, under scenarios of aggravating drought co-occurring with heatwaves, tree seedlings could face a high risk of crown decline in relation to the synergistically increased hydraulic and thermal impairments.


Assuntos
Secas , Fraxinus , Plântula , Árvores/fisiologia , Água/fisiologia , Carbono , Carboidratos
11.
New Phytol ; 236(2): 714-728, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35811425

RESUMO

Hemiepiphytic figs killing their host trees is an ecological process unique to the tropics. Yet the benefits and adaptive strategies of their special life history remain poorly understood. We compared leaf phosphorus (P) content data of figs and palms worldwide, and functional traits and substrate P content of hemiepiphytic figs (Ficus tinctoria), their host palm and nonhemiepiphytic conspecifics at different growth stages in a common garden. We found that leaf P content of hemiepiphytic figs and their host palms significantly decreased when they were competing for soil resources, but that of hemiepiphytic figs recovered after host death. P availability in the canopy humus and soil decreased significantly with the growth of hemiepiphytic figs. Functional trait trade-offs of hemiepiphytic figs enabled them to adapt to the P shortage while competing with their hosts. From the common garden to a global scale, the P competition caused by high P demand of figs may be a general phenomenon. Our results suggest that P competition is an important factor causing host death, except for mechanically damaging and shading hosts. Killing hosts benefits hemiepiphytic figs by reducing interspecific P competition and better acquiring P resources in the P-deficient tropics, thereby linking the life history strategy of hemiepiphytic figs to the widespread P shortage in tropical soils.


Assuntos
Ficus , Vespas , Animais , Fósforo , Folhas de Planta , Solo , Árvores
12.
Ying Yong Sheng Tai Xue Bao ; 33(3): 711-719, 2022 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-35524523

RESUMO

Ginkgo biloba is an important urban ornamental tree species, but poor growth and damages often occur in urban environments. As a street tree species, the decline and death of G. biloba is particularly frequent, with the relevant physiological mechanism being unclear. In this study, we compared hydraulic characteristics, non-structural carbohydrate (NSC) contents and health status between G. biloba trees growing along the streets and those in parks in Shenyang City. The results showed that G. biloba growing along the streets showed higher degrees of branch and leaf mortality than those growing in the parks. Branches of G. biloba growing in both conditions showed lower degrees of xylem embolism. Branch hydraulic vulnerable curves of G. biloba under the two growing conditions also showed no significant difference, with the average P50 being lower than -2.8 MPa. G. biloba growing along the streets had lower leaf area specific conductivity, smaller tracheid diameter, smaller hydraulic diameter, lower soluble sugar content and total NSC than those growing in parks. Hydraulic failure was not the direct reason for the decline and mortality of G. biloba growing along streets. Under the more stressed growth conditions along the streets, G. biloba had smaller tracheid diameters in stems and lower Huber values, which limited the ability of water transport and photosynthetic carbon assimilation at the whole branch level. In addition, in order to deal with more serious stress such as greater heat and drought stresses, G. biloba might need to invest more NSC to repair damage, which further decreaded NSC contents in branches and increased the risk of carbon imbalance. At the same habitat (street or park), xylem hydraulics and NSC contents of G. biloba also showed relatively large difference among sampling sites, which reflected large heterogeneity of urban environment for tree growth.


Assuntos
Ginkgo biloba , Xilema , Carboidratos , Carbono , Secas , Folhas de Planta/fisiologia , Árvores/fisiologia , Água/fisiologia , Xilema/fisiologia
13.
Plant Physiol ; 189(1): 204-214, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35099552

RESUMO

The hydraulic vulnerability segmentation (HVS) hypothesis implies the existence of differences in embolism resistance between plant organs along the xylem pathway and has been suggested as an adaptation allowing the differential preservation of more resource-rich tissues during drought stress. Compound leaves in trees are considered a low-cost means of increasing leaf area and may thus be expected to show evidence of strong HVS, given the tendency of compound-leaved tree species to shed their leaf units during drought. However, the existence and role of HVS in compound-leaved tree species during drought remain uncertain. We used an optical visualization technique to estimate embolism occurrence in stems, petioles, and leaflets of shoots in two compound-leaved tree species, Manchurian ash (Fraxinus mandshurica) and Manchurian walnut (Juglans mandshurica). We found higher (less negative) water potentials corresponding to 50% loss of conductivity (P50) in leaflets and petioles than in stems in both species. Overall, we observed a consistent pattern of stem > petiole > leaflet in terms of xylem resistance to embolism and hydraulic safety margins (i.e. the difference between mid-day water potential and P50). The coordinated variation in embolism vulnerability between organs suggests that during drought conditions, trees benefit from early embolism and subsequent shedding of more expendable organs such as leaflets and petioles, as this provides a degree of protection to the integrity of the hydraulic system of the more carbon costly stems. Our results highlight the importance of HVS as an adaptive mechanism of compound-leaved trees to withstand drought stress.


Assuntos
Embolia , Juglans , Secas , Folhas de Planta , Caules de Planta , Árvores , Água , Xilema
14.
Tree Physiol ; 42(4): 727-739, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-34718811

RESUMO

Quantifying inter-specific variations of tree resilience to drought and revealing the underlying mechanisms are of great importance to the understanding of forest functionality, particularly in water-limited regions. So far, comprehensive studies incorporating investigations in inter-specific variations of long-term growth patterns of trees and the underlying physiological mechanisms are very limited. Here, in a semi-arid site of northern China, tree radial growth rate, inter-annual tree-ring growth responses to climate variability, as well as physiological characteristics pertinent to xylem hydraulics, carbon assimilation and drought tolerance were analyzed in seven pine species growing in a common environment. Considerable inter-specific variations in radial growth rate, growth response to drought and physiological characteristics were observed among the studied species. Differently, the studied species exhibited similar degrees of resistance to drought-induced branch xylem embolism, with water potential corresponding to 50% loss hydraulic conductivity ranging from -2.31 to -2.96 MPa. We found that higher branch hydraulic efficiency is related to greater leaf photosynthetic capacity, smaller hydraulic safety margin and lower woody density (P < 0.05, linear regressions), but not related to higher tree radial growth rate (P > 0.05). Rather, species with higher hydraulic conductivity and photosynthetic capacity were more sensitive to drought stress and tended to show weaker growth resistance to extreme drought events as quantified by tree-ring analyses, which is at least partially due to a trade-off between hydraulic efficiency and safety across species. This study thus demonstrates the importance of drought resilience rather than instantaneous water and carbon flux capacity in determining tree growth in water-limited environments.


Assuntos
Secas , Pinus , Árvores/fisiologia , Água/fisiologia , Xilema/fisiologia
15.
Tree Physiol ; 40(4): 511-519, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-31976531

RESUMO

Conifers and broadleaved trees coexist in temperate forests and are expected to differ in partitioning strategies between leaf and stem. We compare functional balances between water loss and water supply, and between sugar production and sugar transport/storage, and associate these with xylem growth to better understand how they contribute to these life form strategies. We sampled canopy branches from 14 common species in a temperate forest in northeast China and measured xylem area, phloem area, ray area, ray percentage, dry wood density, xylem conductivity and mean xylem growth rate for branch stems, and the leaf area and specific leaf area for leaves, and calculated the leaf-specific conductivity. Conifers and broadleaved trees did not differ significantly in tissue areas, xylem growth rate and the relation between phloem area and leaf area. Conifers had higher xylem area but lower ray area relative to leaf area. For the same xylem conductivity, phloem area and ray parenchyma area did not differ between conifers and broadleaved trees. Xylem growth rate was similar relative to leaf area and phloem area. Our results indicate that conifers tend to develop more xylem area per leaf area and more tracheid area at the cost of ray parenchyma area, probably to compensate for the low water transport ability of tracheid-based xylem. The divergent strategies between conifers and broadleaved tree species in leaf area and xylem area partitioning probably lead to the convergence of partitioning between leaf area and phloem area. Consequently, conifers tend to consume rather than store carbon to achieve a similar xylem expansion per year as coexisting broadleaved trees.


Assuntos
Traqueófitas , Árvores , China , Florestas , Folhas de Planta , Água , Xilema
16.
Glob Chang Biol ; 26(3): 1833-1841, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31749261

RESUMO

Stem xylem-specific hydraulic conductivity (KS ) represents the potential for plant water transport normalized by xylem cross section, length, and driving force. Variation in KS has implications for plant transpiration and photosynthesis, growth and survival, and also the geographic distribution of species. Clarifying the global-scale patterns of KS and its major drivers is needed to achieve a better understanding of how plants adapt to different environmental conditions, particularly under climate change scenarios. Here, we compiled a xylem hydraulics dataset with 1,186 species-at-site combinations (975 woody species representing 146 families, from 199 sites worldwide), and investigated how KS varied with climatic variables, plant functional types, and biomes. Growing-season temperature and growing-season precipitation drove global variation in KS independently. Both the mean and the variation in KS were highest in the warm and wet tropical regions, and lower in cold and dry regions, such as tundra and desert biomes. Our results suggest that future warming and redistribution of seasonal precipitation may have a significant impact on species functional diversity, and is likely to be particularly important in regions becoming warmer or drier, such as high latitudes. This highlights an important role for KS in predicting shifts in community composition in the face of climate change.


Assuntos
Água , Xilema , Transpiração Vegetal , Estações do Ano , Temperatura
17.
Sci Adv ; 5(2): eaav1332, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30788435

RESUMO

Water must be transported long distances in tall plants, resulting in increasing hydraulic resistance, which may place limitations on the maximum plant height (H max) in a given habitat. However, the coordination of hydraulic traits with H max and habitat aridity remains poorly understood. To explore whether H max modifies the trade-off between hydraulic efficiency and safety or how water availability might influence the relationship between H max and other hydraulic traits, we compiled a dataset including H max and 11 hydraulic traits for 1281 woody species from 369 sites worldwide. We found that taller species from wet habitats exhibited greater xylem efficiency and lower hydraulic safety, wider conduits, lower conduit density, and lower sapwood density, which were all associated with habitat water availability. Plant height and hydraulic functioning appear to represent a single, coordinated axis of variation, aligned primarily with water availability, thus suggesting an important role for this axis in species sorting processes.

18.
Physiol Plant ; 167(4): 661-675, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30637766

RESUMO

Xylem vulnerability to cavitation and hydraulic efficiency are directly linked to fine-scale bordered pit features in water-conducting cells of vascular plants. However, it is unclear how pit characteristics influence water transport and carbon economy in tropical species. The primary aim of this study was to evaluate functional implications of changes in pit characteristics for water relations and photosynthetic traits in tropical Ficus species with different growth forms (i.e. hemiepiphytic and non-hemiepiphytic) grown under common conditions. Intervessel pit characteristics were measured using scanning electron microscopy in five hemiepiphytic and five non-hemiepiphytic Ficus species to determine whether these traits were related to hydraulics, leaf photosynthesis, stomatal conductance and wood density. Ficus species varied greatly in intervessel pit structure, hydraulic conductivity and leaf physiology, and clear differences were observed between the two growth forms. The area and diameter of pit aperture were negatively correlated with sapwood-specific hydraulic conductivity, mass-based net assimilation rate, stomatal conductance (gs ), intercellular CO2 concentration (Ci ) and the petiole vessel lumen diameters (Dv ), but positively correlated with wood density. Pit morphology was only negatively correlated with sapwood- and leaf-specific hydraulic conductivity and Dv . Pit density was positively correlated with gs , Ci and Dv , but negatively with intrinsic leaf water-use efficiency. Pit and pit aperture shape were not significantly correlated with any of the physiological traits. These findings indicate a significant role of pit characteristics in xylem water transport, carbon assimilation and ecophysiological adaptation of Ficus species in tropical rain forests.


Assuntos
Ficus/fisiologia , Fotossíntese , Xilema/fisiologia , Folhas de Planta , Estômatos de Plantas/fisiologia , Água
19.
Tree Physiol ; 39(5): 729-739, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30668831

RESUMO

Characterizing differences in key functional traits between simple-leaved (SL) and compound-leaved (CL) tree species can contribute to a better understanding of the adaptive significance of compound leaf form. In particular, this information may provide a mechanistic explanation to the long-proposed fast-growth hypothesis of CL tree species. Here, using five SL and five CL tree species co-occurring in a typical temperate forest of Northeast China, we tested whether higher hydraulic efficiency underlies potentially high photosynthetic capacity in CL species. We found that the CL species had significantly higher hydraulic conductance at the whole-branch level than the SL species (0.52 ± 0.13 vs 0.15 ± 0.04 × 10-4 kg m-2 s-1 Pa-1, P = 0.029). No significant difference in net photosynthetic rate (14.7 ± 2.43 vs 12.5 ± 2.05 µmol m-2 s-1, P = 0.511) was detected between these two groups, but this was largely due to the existence of one outlier species in each of the two functional groups. Scrutinization of the intragroup variations in functional traits revealed that distinctions of the two outlier species in wood type (ring- vs diffuse-porous) from their respective functional groups have likely contributed to their aberrant physiological performances. The potentially high photosynthetic capacity of CL species seems to require ring-porous wood to achieve high hydraulic efficiency. Due to its limitation on leaf photosynthetic capacity, diffuse-porous wood with lower hydraulic conductivity largely precludes its combination with the 'throw-away' strategy (i.e., annually replacing the stem-like rachises) of compound-leaved tree species, which intrinsically requires high carbon assimilation rate to compensate for their extra carbon losses. Our results for the first time show clear differentiation in hydraulic architecture and CO2 assimilation between sympatric SL and CL species, which contributes to the probing of the underlying mechanism responsible for the potential fast growth of trees with compound leaves.


Assuntos
Fotossíntese , Folhas de Planta/anatomia & histologia , Transpiração Vegetal , Árvores/fisiologia , China , Folhas de Planta/fisiologia , Árvores/anatomia & histologia
20.
Tree Physiol ; 38(12): 1792-1804, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30376119

RESUMO

Nonstructural carbohydrates (NSC) have been proposed to play an important role in maintaining the hydraulic integrity of trees, particularly in environments with high risks of embolism formation, but knowledge about the interaction between NSC reserves and xylem hydraulics is still very limited. We studied the variation of NSC reserves and hydraulic traits in Pinus koraiensis Sieb. et Zucc. (Korean pine) in March and June across a relatively large altitudinal gradient in Changbai Mountain of Northeast China. One of the major aims was to investigate the potential role NSC plays in maintaining hydraulic integrity of overwintering stems in facing freezing-induced embolism. Consistent with our hypotheses, substantial variations in both NSC contents and hydraulic traits were observed across altitudes and between the two seasons. In March, when relatively high degrees of winter embolism exist, the percentage loss of conductivity (PLC) showed an exponential increase with altitude. Most notably, positive correlations between branch and trunk soluble sugar content and PLC (P = 0.053 and 0.006) were observed across altitudes during this period. These correlations could indicate that more soluble sugars are required for maintaining stem hydraulic integrity over the winter by resisting or refilling freezing-induced embolism in harsher environments, although more work is needed to establish a direct causal relationship between NSC dynamics and xylem hydraulics. If the correlation is indeed directly associated with varying demands for maintaining hydraulic integrity across environmental gradients, greater carbon demands may compromise tree growth under conditions of higher risk of winter embolism leading to a trade-off between competitiveness and stress resistance, which may be at least partially responsible for the lower dominance of Korean pine trees at higher altitudes.


Assuntos
Metabolismo dos Carboidratos , Pinus/metabolismo , Árvores/metabolismo , Xilema/metabolismo , Altitude , China , Hidrologia , Caules de Planta/metabolismo , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...