Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 12(6)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38930503

RESUMO

The yak (Poephagus grunniens) has evolved unique adaptations to survive the harsh environment of the Qinghai-Tibetan Plateau, while their gut microorganisms play a crucial role in maintaining the health of the animal. Gut microbes spread through the animal population not only by horizontal transmission but also vertically, which enhances microbial stability and inheritance between generations of the population. Homogenization of gut microbes in different animal species occurs in the same habitat, promoting interspecies coexistence. Using the yak as a model animal, this paper discusses the adaptive strategies under extreme environments, and how the gut microbes of the yak circulate throughout the Tibetan Plateau system, which not only affects other plateau animals such as plateau pikas, but can also have a profound impact on the health of people. By examining the relationships between yaks and their gut microbiota, this review offers new insights into the adaptation of yaks and their ecological niche on the Qinghai-Tibetan plateau.

2.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38902909

RESUMO

The aim of this study was to investigate the effects of ensiled agricultural byproducts from Qinghai-Tibet plateau on growth performance, rumen microbiota, ruminal epithelium morphology, and nutrient transport-related gene expression in Tibetan sheep. Fourteen male Tibetan sheep were randomly assigned to one of two diets: an untreated diet (without silage inoculum, CON, n = 7) or an ensiled diet (with silage inoculum, ESD, n = 7). The total experimental period lasted for 84 d, including early 14 d as adaption period and remaining 70 d for data collection. The ESD increased average daily gain (P = 0.046), dry matter intake (P < 0.001), ammonia nitrogen (P = 0.045), microbial crude protein (P = 0.034), and total volatile fatty acids concentration (P < 0.001), and decreased ruminal pH value (P = 0.014). The proportion of propionate (P = 0.006) and the copy numbers of bacteria (P = 0.01) and protozoa (P = 0.002) were higher, while the proportion of acetate (P = 0.028) was lower in the sheep fed ESD compared to CON. Pyrosequencing of the 16S ribosomal RNA gene revealed that ESD increased the relative abundance of Firmicutes, Ruminococcus, Lachnospiraceae_AC2044_group, Lachnospiraceae_XPB1014_group, and Christensenellaceae_R-7_group in the rumen (P < 0.05), while decreased the relative abundance of Bacteroidota, Prevotellaceae_UCG-003, and Veillonellaceae_UCG-001 (P < 0.05). Analyses with PICRUSt2 and STAMP indicated that the propionate metabolism pathway was enriched in the sheep fed ESD (P = 0.026). The ESD increased the rumen papillae height (P = 0.012), density (P = 0.036), and surface area (P = 0.001), and improved the thickness of the total epithelia (P = 0.018), stratum corneum (P = 0.040), stratum granulosum (P = 0.042), and stratum spinosum and basale (P = 0.004). The relative mRNA expression of cyclin-dependent Kinase 2, CyclinA2, CyclinD2, zonula occludens-1, Occludin, monocarboxylate transporter isoform 1 (MCT1), MCT4, sodium/potassium pump, and sodium/hydrogen antiporter 3 were higher in the rumen epithelial of sheep fed ESD than CON (P < 0.05). Conversely, the relative mRNA expressions of Caspase 3 and B-cell lymphoma-2 were lower in the sheep fed ESD than CON (P < 0.05). In conclusion, compared with an untreated diet, feeding an ensiled diet altered the rumen microbial community, enhanced nutrient transport through rumen epithelium, and improved the growth performance of Tibetan sheep.


Tibetan sheep on the Qinghai-Tibet Plateau experience significant nutrient stress while a substantial amount of agricultural byproducts in the region go discarded and wasted. In this study, agricultural byproducts were ensiled and fed to the Tibetan sheep to investigate their effects on growth performance, rumen microorganisms, and nutrient transport through rumen epithelial tissues. Fourteen male Tibetan sheep were randomly assigned to one of two diets: untreated diet (without silage inoculum, CON, n = 7) or ensiled diet (with silage inoculum, ESD, n = 7). After 70 d of feeding, the ESD-fed sheep had a higher body weight than CON. The ensiled diet changed the rumen microbial community and increased the relative abundance of cellulolytic bacteria in the rumen. In addition, the ensiled diet also promoted the development of rumen epithelia and improved the relative expression of gene related to nutrient transport. Overall, the ensiled diet optimized the use of agricultural byproducts and significantly contributed to the production of Tibetan sheep.


Assuntos
Ração Animal , Dieta , Rúmen , Silagem , Animais , Rúmen/microbiologia , Ovinos/fisiologia , Ovinos/crescimento & desenvolvimento , Masculino , Dieta/veterinária , Ração Animal/análise , Silagem/análise , Tibet , Microbioma Gastrointestinal/efeitos dos fármacos , Epitélio , Fenômenos Fisiológicos da Nutrição Animal , Distribuição Aleatória , Bactérias/classificação
3.
Open Life Sci ; 19(1): 20220885, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38911929

RESUMO

To evaluate the effects of varying proportions of yak meat in feed on the growth of rats and provide a theoretical basis for selecting the optimal feed proportion suitable for rats. This study was designed as a one-variable experiment. Fifty male rats were divided into five groups. The ratios of yak meat to basal feed of rats in four dietary treatment groups were 2:8, 4:6, 6:4, and 8:2, respectively, while those in the control group were only provided a basal diet. In the feeding experiment, the body weights of the rats were recorded on Day 0 and subsequently in the first, second, third, and fourth weeks, along with quantities of feed intake. The body and tail lengths, as well as the waist circumference of the rats, were measured, and blood samples were collected in the fourth week for routine blood and biochemistry investigations. The rats in the 4:6 feed group had the best body condition. They had normal body and tail lengths, smaller waist circumferences, good posture, and were in better overall health than rats in the other groups. The results indicate that the 4:6 diet was optimal for enhancing rats' growth performance compared to the other diets.

4.
Nutr Rev ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38781288

RESUMO

Maternal nutrition during pregnancy regulates the offspring's metabolic homeostasis, including insulin sensitivity and the metabolism of glucose and lipids. The fetus undergoes a crucial period of plasticity in the uterus; metabolic changes in the fetus during pregnancy caused by maternal nutrition not only influence fetal growth and development but also have a long-term or even life-long impact for the offspring. Epigenetic modifications, such as DNA methylation, histone modification, and non-coding RNAs, play important roles in intergenerational and transgenerational effects. In this context, this narrative review comprehensively summarizes and analyzes the molecular mechanisms underlying how maternal nutrition, including a high-fat diet, polyunsaturated fatty acid diet, methyl donor nutrient supplementation, feed restriction, and protein restriction during pregnancy, impacts the genes involved in glucolipid metabolism in the liver, adipose tissue, hypothalamus, muscle, and oocytes of the offspring in terms of the epigenetic modifications. This will provide a foundation for the further exploration of nutrigenetic and epigenetic mechanisms for integrative mother-child nutrition and promotion of the offspring's health through the regulation of maternal nutrition during pregnancy. Note: This paper is part of the Nutrition Reviews Special Collection on Precision Nutrition.

5.
J Food Prot ; 87(7): 100295, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38729244

RESUMO

The quality of meat can differ between grazing and feedlot yaks. The present study examined whether spectral fingerprints by visible and near-infrared (Vis-NIR) spectroscopy and chemo-metrics could be employed to identify the meat of grazing and feedlot yaks. Thirty-six 3.5-year-old castrated male yaks (164 ± 8.38 kg) were divided into grazing and feedlot yaks. After 5 months on treatment, liveweight, carcass weight, and dressing percentage were greater in the feedlot than in grazing yaks. The grazing yaks had greater protein content but lesser fat content than feedlot yaks. Principal component analysis (PCA) was able to identify the meat of the two groups to a great extent. Using either partial least squares discriminant analysis (PLS-DA) or the soft independent modeling of class analogies (SIMCA) classification, the meat could be differentiated between the groups. Both the original and processed spectral data had a high discrimination percentage, especially the PLS-DA classification algorithm, with 100% discrimination in the 400-2500 nm band. The spectral preprocessing methods can improve the discrimination percentage, especially for the SIMCA classification. It was concluded that the method can be employed to identify meat from grazing or feedlot yaks. The unerring consistency across different wavelengths and data treatments highlights the model's robustness and the potential use of NIR spectroscopy combined with chemometric techniques for meat classification. PLS-DA's accurate classification model is crucial for the unique evaluation of yak meat in the meat industry, ensuring product traceability and meeting consumer expectations for the authenticity and quality of yak meat raised in different ways.


Assuntos
Carne , Espectroscopia de Luz Próxima ao Infravermelho , Animais , Bovinos , Carne/análise , Masculino , Quimiometria , Análise Discriminante , Análise de Componente Principal
7.
Microbiol Spectr ; 12(1): e0251623, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38054628

RESUMO

IMPORTANCE: On the Qinghai-Tibet Plateau (QTP), feed shortages are common due to cold environmental conditions and the short growing season of crops. Therefore, effective preservation, such as the ensiling of local forage, is becoming increasingly important to balance the seasonal imbalance between the forage supply and the nutritional needs of domestic animals in this area. However, the structure of the microbial community of the forage, which is influenced by climatic conditions such as altitude differences, has a major impact on the fermentation quality and microbial succession of the ensiled forage. Therefore, we investigated microbial community dynamics, co-occurrence, functional shifts, and natural fermentation profiles of Elymus nutans silage as a function of altitudinal gradients. Results show that silage from Chenduo at higher elevations has better fermentation quality and higher abundance of Lacticaseibacillus and Levilactobacillus than ensiled forage from other regions. This work may contribute to guiding for silage production in QTP.


Assuntos
Elymus , Microbiota , Animais , Fermentação , Silagem/análise , Lactobacillaceae
8.
Microorganisms ; 11(10)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37894057

RESUMO

This study compared the growth performance, serum biochemical indicators, rumen fermentation parameters, rumen bacterial structure, and fecal bacterial structure of cattle and yaks fed for two months and given a feed containing concentrate of a roughage ratio of 7:3 on a dry matter basis. Compared with cattle, yak showed better growth performance. The serum biochemical results showed that the albumin/globulin ratio in yak serum was significantly higher than that in cattle. Aspartate aminotransferase, indirect bilirubin, creatine kinase, lactate dehydrogenase, and total cholesterol were significantly lower in yaks than in cattle. The rumen pH, acetate to propionate ratio, and acetate were lower in yaks than in cattle, whereas the lactate in yaks was higher than in cattle. There were significant differences in the structure of ruminal as well as fecal bacteria between cattle and yaks. The prediction of rumen bacterial function showed that there was a metabolic difference between cattle and yaks. In general, the metabolic pathway of cattle was mainly riched in a de novo synthesis of nucleotides, whereas that of yaks was mainly riched in the metabolic utilization of nutrients. This study provides a basis for understanding a rumen ecology under the condition of a high concentrate diet.

9.
Animals (Basel) ; 13(16)2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37627442

RESUMO

Copper, manganese, and iodine are part of a yak's required trace elements. However, knowledge about their dietary requirements is scarce. Therefore, an experiment was conducted to evaluate rumen fermentation, blood parameters, and growth performance and screen out the optimum levels of trace elements in yaks' diet. Here, 18 three-year-old castrated yaks were randomly divided into four groups, which fed with diets containing basal (CON: 4.40, 33.82, and 0 mg/kg) and low-level (LL: 10.00, 40.00, and 0.30 mg/kg), middle-level (ML: 15.00, 50.00, and 0.50 mg/kg), and high-level (HL: 20.00, 60.00, and 0.70 mg/kg) copper, manganese, and iodine for 30 days. With the increase in trace elements, yaks' daily weight gain (DWG), rumen pH, ammonia nitrogen, microbial protein (MCP), and volatile fatty acids levels and serum triglycerides and urea nitrogen levels showed firstly increasing and then decreasing trends and reached the highest values in ML, and serum ceruloplasmin and total superoxide dismutase (T-SOD) activities showed continuously increasing trends. Yaks' DWG, rumen MCP, butyrate, and valerate levels and serum triglycerides, urea nitrogen, ceruloplasmin, and T-SOD levels in ML were significantly higher than CON. Therefore, the recommended levels of copper, manganese, and iodine in growing yaks' diet are 15.00, 50.00, and 0.50 mg/kg (ML), respectively.

10.
Sci Total Environ ; 897: 165336, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37414176

RESUMO

To better utilize poorly fermented oat silage on the Qinghai Tibetan Plateau, 239 samples of this biomass were collected from the plateau temperate zone (PTZ), plateau subboreal zone (PSBZ), and nonplateau climatic zone (NPCZ) in the region and analyzed for microbial community, chemical composition and in vitro gas production. Climatic factors affect the bacterial α-diversity and ß-diversity of poorly fermented oat silage, which led to the NPCZ having the highest relative abundance of Lactiplantibacillus plantarum. Furthermore, the gas production analysis showed that the NPCZ had the highest maximum cumulative gas emissions of methane. Through structural equation modeling analysis, environmental factors (solar radiation) affected methane emissions via the regulation of lactate production by L. plantarum. The enrichment of L. plantarum contributes to lactic acid production and thereby enhances methane emission from poorly fermented oat silage. Notably, there are many lactic acid bacteria detrimental to methane production in the PTZ. This knowledge will be helpful in revealing the mechanisms of environmental factors and microbial relationships influencing the metabolic processes of methane production, thereby providing a reference for the clean utilization of other poorly fermented silage.


Assuntos
Avena , Biocombustíveis , Biocombustíveis/análise , Silagem/análise , Tibet , Bactérias/metabolismo , Metano/análise
11.
Front Vet Sci ; 10: 1175894, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37360409

RESUMO

Introduction: Manganese (Mn) is an essential trace element for livestock, but little is known about the optimal Mn source and level for yak. Methods: To improve yak's feeding standards, a 48-h in vitro study was designed to examine the effect of supplementary Mn sources including Mn sulfate (MnSO4), Mn chloride (MnCl2), and Mn methionine (Met-Mn) at five Mn levels, namely 35 mg/kg, 40 mg/kg, 50 mg/kg, 60 mg/kg, and 70 mg/kg dry matter (includes Mn in substrates), on yak's rumen fermentation. Results: Results showed that Met-Mn groups showed higher acetate (p < 0.05), propionate, total volatile fatty acids (p < 0.05) levels, ammonia nitrogen concentration (p < 0.05), dry matter digestibility (DMD), and amylase activities (p < 0.05) compared to MnSO4 and MnCl2 groups. DMD (p < 0.05), amylase activities, and trypsin activities (p < 0.05) all increased firstly and then decreased with the increase of Mn level and reached high values at 40-50 mg/kg Mn levels. Cellulase activities showed high values (p < 0.05) at 50-70 mg/kg Mn levels. Microbial protein contents (p < 0.05) and lipase activities of Mn-Met groups were higher than those of MnSO4 and MnCl2 groups at 40-50 mg/kg Mn levels. Discussion: Therefore, Mn-met was the best Mn source, and 40 to 50 mg/kg was the best Mn level for rumen fermentation of yaks.

12.
Clin Cosmet Investig Dermatol ; 16: 751-767, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37016603

RESUMO

Objective: Treatment of burn wound healing involves infection, nutrition, psychology and rehabilitation, and proper nutritional support can promote wound healing, enhance immune function and reduce the incidence of complications. This study aimed to investigate the effects of feed containing yak meat on scalded rats' body condition and wound healing. Methods: Adopting a two-factor factorial design, the growth performance, food intake, body weight, and Lee's index of rats were measured. The wound conditions of scalded rats with different feeds (basic, basic + yak meat, and basic + yellow beef) were observed at different periods, and their wounds' hematoxylin and eosin (H&E) staining states were detected. The proliferating cell nuclear antigen (PCNA)-positive cells and apoptosis were analyzed to evaluate the effects of feed on the wound healing of scalded rats. Results: The feed intake was the highest in the yellow beef feed group and the lowest in the yak meat feed group. The body weight was the highest in the yak meat feed group and the lowest in the yellow beef feed group. Furthermore, 45 days after scalding, the obesity index in the yak beef feed group was the closest to that of the rats before scalding. The wound recovery of the rats in the yak meat feed group was the best at 30 days, and the H&E staining results also proved that the recovery effect of the scalded rats in the yak meat feed group was better than other two groups. According to the results of PCNA and apoptosis, the yak meat feed group had lower positive cell rate and faster wound healing. Conclusion: The rats in the yak meat feed group recovered better than those in the other groups, and the yak beef feed had the best effect on the wound healing of the scalded rats.

13.
Anim Nutr ; 12: 138-144, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36683881

RESUMO

Yaks living on the Qinghai-Tibetan Plateau for a long time have evolved a series of mechanisms to adapt to the unique geographical environment and climate characteristics of the plateau. Compared with other ruminants, yaks have higher energy utilization and metabolic efficiency. This paper presents possible mechanisms responsible for the efficient energy utilization, absorption and metabolism resulting from the unique evolutionary process of yaks. It is hoped that the information discussed in this review will give a better insight into the uniqueness and superiority of yaks in regards to energy metabolism and utilization compared with cattle and open new avenues for the targeted regulation of energy utilization pathways of other ruminants.

14.
Anim Nutr ; 12: 77-86, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36514373

RESUMO

Yaks (Bos grunniens), indigenous to the harsh Qinghai-Tibetan Plateau, are well adapted to the severe conditions, and graze natural pasture without supplements all year round. Qaidam cattle (Bos taurus), introduced to the Qinghai-Tibetan Plateau 1,700 years ago, are raised at a lower altitude than yaks, provided with shelter at night and offered supplements in winter. Based on their different backgrounds, we hypothesized that yaks have lower energy requirements for maintenance than cattle. To test this hypothesis, we measured average daily gain (ADG), apparent digestibilities, energy balance, rumen fermentation parameters, and serum metabolites in growing yaks and cattle offered diets differing in metabolizable energy (ME) levels (6.62, 8.02, 9.42 and 10.80 MJ/kg), but with the same crude protein concentration. Six castrated yaks (155 ± 5.8 kg) and 6 castrated Qaidam cattle (154 ± 8.0 kg), all 2.5 years old, were used in 2 concurrent 4 × 4 Latin square designs. Neutral and acid detergent fiber digestibilities were greater (P < 0.05) in yaks than in cattle, and decreased linearly (P < 0.05) with increasing dietary energy level; whereas, digestibilities of dry matter, organic matter, crude protein and ether extract increased (P < 0.05) linearly with increasing energy level. The ADG was greater (P < 0.001) in yaks than in cattle, and increased (P < 0.05) linearly with increasing energy levels. From the regressions of ADG on ME intake, the estimated ME requirement for maintenance was lower (P < 0.05) in yaks than in cattle (0.43 vs. 0.57 MJ/kg BW0.75). The ratios of digestible energy (DE):gross energy and ME:DE were higher (P < 0.05) in yaks than in cattle, and increased (P < 0.05) linearly with increasing dietary energy level. Ruminal pH decreased (P < 0.05), whereas concentrations of total volatile fatty acids (VFAs) and ammonia increased (P < 0.01) with increasing dietary energy level, and all were greater (P < 0.05) in yaks than in cattle. Concentrations of ruminal acetate and iso-VFAs were greater (P < 0.05), whereas propionate was lower (P < 0.05) in yaks than in cattle; acetate decreased (P < 0.001), whereas butyrate and propionate increased (P < 0.001) linearly with increasing dietary energy level. Serum concentrations of ß-hydroxybutyrate were lower (interaction, P < 0.001) in yaks than in cattle fed diets of 9.42 and 10.80 MJ/kg, whereas non-esterified fatty acids were greater (interaction, P < 0.01) in yaks than in cattle fed diets of 6.62 and 8.02 MJ/kg. Concentrations of serum leptin and growth hormone were greater in yaks than in cattle and serum insulin and growth hormone increased (P < 0.01) linearly with increasing dietary energy level. Our hypothesis that yaks have lower energy requirements for maintenance than cattle was supported. This lower requirement confers an advantage to yaks over Qaidam cattle in consuming low energy diets during the long winter on the Qinghai-Tibetan Plateau.

15.
Front Microbiol ; 13: 1013980, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36304954

RESUMO

This study examined the effect of the ratio of dietary metabolizable energy (MJ) to nitrogen (g) content (ME:N) on average daily gain (ADG), blood biochemical indices, rumen fermentation parameters, and rumen bacterial community in yaks. Thirty-six male yaks, aged 2-3 years, were divided into three groups and received a ME:N ratio of 0.42 (HY), 0.36 (MY,) or 0.32 (LY) MJ/g. Dry matter intake ranged between 3.16 and 3.63 kg/d and was lesser (p < 0.001) in the LY group than the other two groups. ME intake increased (p < 0.001) with an increase in the ME:N ratio, while N intake did not differ among groups. The ADG was 660 g/day for the MY group, which was higher (p < 0.005) than the 430 g/day in the LY group, while the HY group gained 560 g/day and did not differ from the other two groups. Feed intake to ADG ratio ranged between 5.95 and 7.95, and numerically was highest in the LY group and lowest in the MY group. In general, the concentration of ruminal total volatile fatty acids (p < 0.03) and molar proportions of propionate (p < 0.04), increased, while the molar proportion of acetate (p < 0.005) and the acetate:propionate ratio decreased (p < 0.001) with a decrease in the ME:N ratio. The molar proportion of butyrate did not differ among groups (p = 0.112). Group MY had higher ruminal NH3-N content than group HY and had a higher serum glucose content but lower urea content, lactate dehydrogenase, and creatine kinase content than group LY. In ruminal bacteria at the phylum level, the relative abundance of Firmicutes (F) was greater and of Bacteroidetes (B) was lesser, while the F:B ratio was greater in group MY than in groups HY an LY. We concluded that the yaks consuming the diet containing a ME:N ratio of 0.36 MJ/g had the best performance of the three groups.

16.
Anim Nutr ; 11: 38-47, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36091259

RESUMO

A feeding experiment was conducted to determine the effects of inoculating alfalfa silage with a ferulic acid esterase-producing inoculum on feed digestibility, rumen fermentation, antioxidant, and immunity status of lactating dairy goats. Twenty dairy goats were distributed into 2 experimental groups consisting of control diet (Lp MTD/1, including Lactobacillus plantarum MTD/1 inoculated silage) against diet containing silage treated with ferulic acid esterase-producing L. plantarum A1 (Lp A1). Alfalfa silage inoculated with a ferulic acid esterase-producing Lp A1 had better fermentation quality than the Lp MTD/1 inoculation. The application of Lp A1 improved silage antioxidant capacity as indicated by greater total antioxidant capacity (T-AOC), superoxide dismutase (SOD) and glutathion peroxidase (GSH-Px) activities in Lp A1 treated silage versus Lp MTD/1 treatment. Compared with Lp MTD/1 treated group, inoculation of silage with Lp A1 increased apparent total tract digestibility of dietary dry matter, organic matter and crude protein, and ruminal concentrations of total volatile fatty acids, acetate, propionate and isobutyrate as well. The results of current study also demonstrated improved antioxidant capacity and immune performance of dairy goats with Lp A1 inoculation. Feeding Lp A1-treated silage increased dairy goats' serum antioxidase activity, such as T-AOC, SOD, GSH-Px and catalase, and the serum concentration of immunoglobulin A, while decreased tumor necrosis factor α, interleukin (IL)-2 and IL-6. In addition, compared with Lp MTD/1, diet containing alfalfa silage inoculated with Lp A1 endowed dairy goats' milk with greater fat and protein contents, improved dairy goat milk quality without affecting feed efficiency.

17.
Metabolites ; 12(8)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36005610

RESUMO

This study aimed to investigate the changes in the blood metabolic profiles of grazing yaks during the cold season to reveal their physiological status and seek the nutrients needed to be supplemented. Six castrated yaks (3 years old) with 166.8 kg (standard deviation = 5.3) of liveweight grazed in the Qinghai-Tibetan Plateau were used as experimental animals without supplementary feeding. Blood samples of each animal were collected in October and December 2015, and March 2016 for the analysis of serum biochemicals and metabolome. Results showed serum indices involved in protein metabolism in grazing yaks showed greater differences during the cold season than the metabolisms of energy or minerals. Cold stress in December had minor effects on the serum metabolic profiles of yaks compared with those in October. Yaks in October and December shared seven differential serum metabolites and enrichments of the "arachidonic acid metabolism" and "glycine, serine, and threonine metabolism" pathways compared with those in March caused by the shortage of feeds. Summarily, the nutrient deficiency would be influential on the physiological status of grazing yaks during the cold season, especially on the protein metabolism, which could be improved by supplementary feeds.

18.
Appl Environ Microbiol ; 88(15): e0099222, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35856688

RESUMO

Phytosterols are natural steroids in plants, possessing bioactivities that could modify gut microbes. This experiment aimed to evaluate the effects of feeding phytosterols on the community structures and metabolic functions of the rumen microbiota in perinatal cows. Perinatal cows were supplied with 0 mg (control) or 200 mg (treatment) phytosterols per day. Multiomic analyses were used to analyze the community structures and metabolic functions of rumen microbiota. Results showed that dietary phytosterols increased the copy number of total ruminal bacteria, the concentration of microbial crude protein, and the molar percentage of propionate in the rumen of perinatal cows but had no effects on the alpha diversity of ruminal bacteria. However, they enriched three genera (i.e., Fibrobacter) and seven species (i.e., Fibrobacter succinogenes) within active ruminal bacteria. Metatranscriptomic and metabolomic analyses revealed that dietary phytosterols enhanced the pathway of glycolysis and the family of glycoside hydrolase 13 but depressed the citrate cycle and pyruvate metabolism and several pathways of amino acid biosynthesis. In conclusion, dietary addition of phytosterols improved the growth of ruminal bacteria and changed rumen fermentation by modifying the rumen microbiome and the energy metabolism pathways, which would be beneficial for the energy utilization of perinatal cows. IMPORTANCE Perinatal cows suffer serious physiological stress and energy deficiency. Phytosterols have bioactive functions for gut microbes. However, little knowledge is available on their effects on rumen microbiota and rumen fermentation. Results of the present experiment revealed that dietary supplementation of phytosterols could improve the growth of ruminal bacteria and changed the rumen fermentation to provide more glycogenetic precursors for the perinatal cows by modifying the ruminal bacteria community and altering the energy metabolism pathways of the rumen microbiota. These findings suggest that dietary supplementation of phytosterols would be beneficial for perinatal cows suffering from a negative energy balance.


Assuntos
Microbioma Gastrointestinal , Microbiota , Fitosteróis , Ração Animal/análise , Animais , Bovinos , Dieta/veterinária , Suplementos Nutricionais/análise , Feminino , Fermentação , Lactação , Fitosteróis/metabolismo , Fitosteróis/farmacologia , Rúmen/microbiologia
19.
Front Vet Sci ; 9: 906440, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35903137

RESUMO

There is little information available on milk intake and energy and nitrogen requirements of growing yak calves. This study aimed to fill this important gap, as this information could be beneficial in designing a system to wean yak calves earlier than in natural time. We determined the average daily gain and energy and nitrogen balances and requirements of 4-month-old female yak calves (48.8 ± 2.45 kg, n = 8). The calves were allowed to suck once a day and were fed an ad libitum concentrate: hay diet at a ratio of 60:40. Milk intake averaged 540 ± 26 g/d, yielding 2.28 ± 0.112 MJ/d, which was 13% of the gross energy intake (GEI). The digestible energy intake (DEI):GEI ratio was 0.681, metabolizable energy intake (MEI):DEI was 0.913, and MEI:GEI was 0.621. The average daily gain of the calves was 433 ± 153.1 g/d, which consisted of 78.0 ± 8.99 g protein, 52.7 ± 23.74 g fat, and 302.3 ± 95.1 g water, that is, 18.0% protein, 13.0% fat and 69.8% water. There were 130.7 g of body solids and 9.06 MJ of energy in every kg of body mass gain. Of the MEI, 25.17 kJ were required for 1 g of body mass, 83.40 kJ for 1 g of body solids, and 2.62 kJ for 1 kJ of retained energy (RE), and RE was 36.6% of MEI. The maintenance energy requirement was 5.35 MJ/d, the efficiency of utilization of energy for growth (kg) was 0.72, and the heat increment of feeding for growth was 0.28 (1.55 MJ/d). Digestible nitrogen (N) was 0.685 while retained N (RN) was 0.489 of N intake. The N requirement for maintenance was 11.73 g/d or 0.61 g N/kg0.75 per day, while the biological value (BV) of N was 91.1%. The energy and N requirements for yak calves were relatively low, which could be explained, at least in part, by the high efficiency of utilization of energy and high BV of N when compared to other livestock. These findings could be beneficial in designing early weaning systems for the many Himalayan households depending on yak production for their livelihoods.

20.
J Fungi (Basel) ; 8(4)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35448569

RESUMO

Anaerobic fungi, though low in abundance in rumen, play an important role in the degradation of forage for herbivores. When only anaerobic fungi exist in the fermentation system, the continuous accumulation of metabolites (e.g., hydrogen (H2) and formate) generated from their special metabolic organelles-the hydrogenosome-inhibits the enzymatic reactions in the hydrogenosome and reduces the activity of the anaerobic fungi. However, due to interspecific H2 transfer, H2 produced by the hydrogenosome can be used by other microorganisms to form valued bioproducts. This symbiotic interaction between anaerobic fungi and other microorganisms can be used to improve the nutritional value of animal feeds and produce value-added products that are normally in low concentrations in the fermentation system. Because of the important role in the generation and further utilization of H2, the study of the hydrogensome is increasingly becoming an important part of the development of anaerobic fungi as model organisms that can effectively improve the utilization value of roughage. Here, we summarize and discuss the classification and the process of biomass degradation of anaerobic fungi and the metabolism and function of anaerobic fungal hydrogensome, with a focus on the potential role of the hydrogensome in the efficient utilization of biomass.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...