Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38794356

RESUMO

Ilex × attenuata 'Sunny Foster' represents a yellow leaf mutant originating from I. × attenuata 'Foster#2', a popular ornamental woody cultivar. However, the molecular mechanisms underlying this leaf color mutation remain unclear. Using a comprehensive approach encompassing cytological, physiological, and transcriptomic methodologies, notable distinctions were discerned between the mutant specimen and its wild type. The mutant phenotype displayed aberrant chloroplast morphology, diminished chlorophyll content, heightened carotenoid/chlorophyll ratios, and a decelerated rate of plant development. Transcriptome analysis identified differentially expressed genes (DEGs) related to chlorophyll metabolism, carotenoid biosynthesis and photosynthesis. The up-regulation of CHLD and CHLI subunits leads to decreased magnesium chelatase activity, while the up-regulation of COX10 increases heme biosynthesis-both impair chlorophyll synthesis. Conversely, the down-regulation of HEMD hindered chlorophyll synthesis, and the up-regulation of SGR enhanced chlorophyll degradation, resulting in reduced chlorophyll content. Additionally, genes linked to carotenoid biosynthesis, flavonoid metabolism, and photosynthesis were significantly down-regulated. We also identified 311 putative differentially expressed transcription factors, including bHLHs and GLKs. These findings shed light on the molecular mechanisms underlying leaf color mutation in I. × attenuata 'Sunny Foster' and provide a substantial gene reservoir for enhancing leaf color through breeding techniques.

2.
Plants (Basel) ; 10(3)2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33804110

RESUMO

Ilex × altaclerensis 'Belgica Aurea' is an attractive ornamental plant bearing yellow-green variegated leaves. However, the mechanisms underlying the formation of leaf variegation in this species are still unclear. Here, the juvenile yellow leaves and mature variegated leaves of I. altaclerensis 'Belgica Aurea' were compared in terms of leaf structure, pigment content and transcriptomics. The results showed that no obvious differences in histology were noticed between yellow and variegated leaves, however, ruptured thylakoid membranes and altered ultrastructure of chloroplasts were found in yellow leaves (yellow) and yellow sectors of the variegated leaves (variegation). Moreover, the yellow leaves and the yellow sectors of variegated leaves had significantly lower chlorophyll compared to green sectors of the variegated leaves (green). In addition, transcriptomic sequencing identified 1675 differentially expressed genes (DEGs) among the three pairwise comparisons (yellow vs. green, variegation vs. green, yellow vs. variegation). Expression of magnesium-protoporphyrin IX monomethyl ester (MgPME) [oxidative] cyclase, monogalactosyldiacylglycerol (MGDG) synthase and digalactosyldiacylglycerol (DGDG) synthase were decreased in the yellow leaves. Altogether, chlorophyll deficiency might be the main factors driving the formation of leaf variegation in I.altaclerensis 'Belgica Aurea'.

3.
Sci Rep ; 9(1): 8372, 2019 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-31182823

RESUMO

Saturated hydraulic conductivity (Ks) is one of the most important soil properties that determines water flow behavior in terrestrial ecosystems. However, the Ks of forest soils is difficult to predict due to multiple interactions, such as anthropological and geomorphic processes. In this study, we examined the impacts of vegetation type on Ks and associated mechanisms. We found that Ks differed with vegetation type and soil depth, and the impact of vegetation type on Ks was dependent on soil depth. Ks did not differ among vegetation types at soil depths of 0-10 and 20-30 cm, but was significantly lower in managed forest types (mixed evergreen broad-leaved and coniferous forests, bamboo forests, and tea gardens) than native evergreen broadleaf forests at a depth of 10-20 cm. Boosted regression tree analysis indicated that total porosity, non-capillary porosity, and macro water-stable aggregates were the primary factors that influenced Ks. Our results suggested that vegetation type was a key factor that influences hydraulic properties in subtropical forest soils through the alteration of soil properties, such as porosity and macro water-stable aggregates.


Assuntos
Ecossistema , Solo/química , Água/química , Carbono/química , Carbono/metabolismo , China , Florestas , Jardins , Humanos , Hidrocarbonetos/química , Condutividade Térmica
4.
PLoS One ; 8(12): e82199, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24324764

RESUMO

BACKGROUND: Elevated tropospheric ozone severely affects not only yield but also the morphology, structure and physiological functions of plants. Because of concerns regarding the potential environmental risk of transgenic crops, it is important to monitor changes in transgenic insect-resistant rice under the projected high tropospheric ozone before its commercial release. METHODOLOGY/PRINCIPAL FINDINGS: Using a free-air concentration enrichment (FACE) system, we investigated the changes in leaf morphology and leaf ultrastructure of two rice varieties grown in plastic pots, transgenic Bt Shanyou 63 (Bt-SY63, carrying a fusion gene of cry1Ab and cry1Ac) and its non-transgenic counterpart (SY63), in elevated O3 (E-O3) versus ambient O3 (A-O3) after 64-DAS (Days after seeding), 85-DAS and 102-DAS. Our results indicated that E-O3 had no significant effects on leaf length, leaf width, leaf area, stomatal length and stomatal density for both Bt-SY63 and SY63. E-O3 increased the leaf thickness of Bt-SY63, but decreased that of SY63. O3 stress caused early swelling of the thylakoids of chloroplasts, a significant increase in the proportion of total plastoglobule area in the entire cell area (PCAP) and a significant decrease in the proportion of total starch grain area in the entire cell area (SCAP), suggesting that E-O3 accelerated the leaf senescence of the two rice genotypes. Compared with SY63, E-O3 caused early swelling of the thylakoids of chloroplasts and more substantial breakdown of chloroplasts in Bt-SY63. CONCLUSIONS/SIGNIFICANCE: Our results suggest that the incorporation of cry1Ab/Ac into SY63 could induce unintentional changes in some parts of plant morphology and that O3 stress results in greater leaf damage to Bt-SY63 than to SY63, with the former coupled with higher O3 sensitivity in CCAP (the proportions of total chloroplast area in the entire cell area), PCAP and SCAP. This study provides valuable baseline information for the prospective commercial release of transgenic crops under the projected future climate.


Assuntos
Agricultura , Proteínas de Bactérias/metabolismo , Endotoxinas/metabolismo , Proteínas Hemolisinas/metabolismo , Oryza/anatomia & histologia , Oryza/genética , Ozônio/farmacologia , Folhas de Planta/anatomia & histologia , Folhas de Planta/ultraestrutura , Toxinas de Bacillus thuringiensis , Parede Celular/efeitos dos fármacos , Cloroplastos/efeitos dos fármacos , Cloroplastos/metabolismo , Cloroplastos/ultraestrutura , Células do Mesofilo/citologia , Células do Mesofilo/efeitos dos fármacos , Células do Mesofilo/ultraestrutura , Oryza/efeitos dos fármacos , Oryza/ultraestrutura , Folhas de Planta/efeitos dos fármacos , Estômatos de Plantas/anatomia & histologia , Estômatos de Plantas/efeitos dos fármacos , Plantas Geneticamente Modificadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...