Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 4433, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38396025

RESUMO

The purpose of the present study is to predict and draw up non-grain cultivated land (NCL) susceptibility map based on optimized Extreme Gradient Boosting (XGBoost) model using the Particle Swarm Optimization (PSO) metaheuristic algorithm. In order to, a total of 184 NCL areas were identified based on historical records, and a total of 16 NCL susceptibility conditioning factors (NCLSCFs) were considered, based on both a systematic literature survey and local environmental conditions. The results showed that the XGBoost model optimized by PSO performed well in comparison to other machine learning algorithms; the values of sensitivity, specificity, PPV, NPV, and AUC are 0.93, 0.89, 0.88, 0.93, and 0.96, respectively. Slope, rainfall, fault density, distance from fault and drainage density are most important variables. According to the results of this study, the use of meta-innovative algorithms such as PSO can greatly enhance the ability of machine learning models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA