Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 877: 162842, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36924959

RESUMO

Toxic heavy metals in industrial hazardous waste incineration (IHWI) fly ash can be effectively stabilized by using microwave-assisted hydrothermal technology. However, few works have focused on the relationship between mineralogical conversion and stability of heavy metals of fly ash during hydrothermal process. This study investigated the effect of mineral phase transition process on the stabilization and migration behavior of heavy metals in IHWI fly ash using coal fly ash as silicon­aluminum additive. Mineral composition analysis reveals that after microwave-assisted hydrothermal treatment (MAHT) of IHWI fly ash, zeolite-like minerals (e.g., tobermorite, katoite and sodalite), secondary aluminosilicate minerals (e.g., prehnite and anorthite) and other newly-formed minerals (e.g., wollastonite, pectolite and larnite) were found. The leaching concentrations of heavy metals (Cr, Ni, Cu, Zn, Cd and Pb) in IHWI fly ash decrease sharply after MAHT with the most obvious decreases in Cu, Pb and Zn. Spearman correlation analysis show significantly negative correlation between the content of zeolite-like minerals and the leaching concentrations of most heavy metals (e.g., Ni, Cu, Zn, Cd and Pb). These results suggest that the immobilization effects of heavy metals in IHWI fly ash can be effectively enhanced by promoting the formation of zeolite-like minerals during the MAHT. This study is expected to further promote the development of IHWI fly ash harmless treatment technology.

2.
Food Chem ; 187: 370-7, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25977039

RESUMO

The objective of this study was to evaluate the antibacterial activities of sugar fatty acid esters, with different fatty acid and saccharide moieties, against five food-related bacteria including Bacillus cereus, Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Salmonella typhimurium. Sucrose monocaprate showed the strongest antibacterial activity against all tested bacteria, especially Gram-positive bacteria. The minimum inhibitory concentrations (MICs) for Gram-positive bacteria and Gram-negative bacteria were 2.5 and 10 mM, respectively. The minimum bactericidal concentrations (MBCs) for Gram-positive bacteria were 10 mM. Time-kill assay also showed that sucrose monocaprate significantly inhibit the growth of tested bacteria. The permeability of the cell membrane and intracellular proteins were both changed by sucrose monocaprate according to cell constituents' leakage, SDS-PAGE and scanning electron microscope assays. It is suggested that sucrose monocaprate, with both emulsifying and antibacterial activities, have a potential to serve as a safe multifunctional food additive in food industries.


Assuntos
Antibacterianos/química , Bactérias/efeitos dos fármacos , Ésteres/química , Ácidos Graxos/química , Eletroforese em Gel de Poliacrilamida , Contaminação de Alimentos/prevenção & controle , Microbiologia de Alimentos , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Sacarose/análogos & derivados , Sacarose/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...