Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Transl Pediatr ; 13(1): 72-90, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38323178

RESUMO

Background: Cerebral palsy (CP) is a unique neurological disorder which adversely affects motion. Cytokines and gut microbial composition contribute to CP and other diseases, such as reproductive tract inflammation and bone loss. Importantly, Saccharomyces boulardii (S. boulardii) reduces the degree of inflammation and improves overall health status. As our previous study showed that Lactobacillus rhamnosus (L. rhamnosus) OF44, a selected strain of gut bacteria originally used to treat reproductive tract inflammation and bone loss, has effects similar to that of S. boulardii, we decided to use L. rhamnosus OF44 on CP rats. Validation of the effects of L. rhamnosus OF44 on CP adds to its confirmed effects in treating osteoporosis and reproductive tract microbiota disorders, increasing its potential as a probiotic. The purpose of this was to ascertain whether L. rhamnosus OF44 can alleviate the symptoms of CP. Methods: CP rat models were created through left carotid artery ligation. Following this, 100-day old CP rats were exposed to L. rhamnosus OF44, S. boulardii, or normal saline gastric gavage daily for 28 days. Grouping of the rats is determined randomly. Before and after the gavage, behavioral experiments were conducted and the inflammation levels assessed via measurements of interleukin (IL)-1ß, IL-6, IL-8, and tumor necrosis factor alpha (TNF-α) inflammatory markers. The efficacy of the outcome is measured by performing statistical analysis like the t-test on the data to see its significance. Additionally, variations inside gut microbiome were evaluated via 16S ribosomal RNA sequencing. Results: Before intervention, CP rats failed to exhibit depression-like behavior (P=0.6). L. rhamnosus OF44 treatment significantly reduced the level of IL-6 (P=4.8e-05), S. boulardii treatment significantly reduced the level of TNF-α (P=0.04). In addition, both treatments altered the composition and complexity of the gut microbiome. Conclusions: Our results indicated that L. rhamnosus OF44 has potential in alleviating inflammation and altering the gut microbial composition in CP, and that it has the potential to clinically treat CP. There are some limitations of this study. For example, dietary differences and their effects on gastrointestinal dysfunction are not considered in this study, and only two behavioral experiments were used.

2.
J Cell Mol Med ; 27(21): 3259-3270, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37525498

RESUMO

Epithelial ovarian cancer (EOC) is one of the most prevalent gynaecological cancers worldwide. The molecular mechanisms of serous ovarian cancer (SOC) remain unclear and not well understood. SOC cases are primarily diagnosed at the late stage, resulting in a poor prognosis. Advances in molecular biology techniques allow us to obtain a better understanding of precise molecular mechanisms and to identify the chromosome instability region and key driver genes in the carcinogenesis and progression of SOC. Whole-exome sequencing was performed on the normal ovarian cell line IOSE80 and the EOC cell lines SKOV3 and A2780. The single-nucleotide variation burden, distribution, frequency and signature followed the known ovarian mutation profiles, without chromosomal bias. Recurrently mutated ovarian cancer driver genes, including LRP1B, KMT2A, ARID1A, KMT2C and ATRX were also found in two cell lines. The genome distribution of copy number alterations was found by copy number variation (CNV) analysis, including amplification of 17q12 and 4p16.1 and deletion of 10q23.33. The CNVs of MED1, GRB7 and MIEN1 located at 17q12 were found to be correlated with the overall survival of SOC patients (MED1: p = 0.028, GRB7: p = 0.0048, MIEN1: p = 0.0051), and the expression of the three driver genes in the ovarian cell line IOSE80 and EOC cell lines SKOV3 and A2780 was confirmed by western blot and cell immunohistochemistry.


Assuntos
Neoplasias Ovarianas , Humanos , Feminino , Carcinoma Epitelial do Ovário/genética , Neoplasias Ovarianas/genética , Linhagem Celular Tumoral , Variações do Número de Cópias de DNA/genética , Instabilidade Cromossômica/genética , Proteínas de Neoplasias/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética
3.
Front Psychiatry ; 14: 1209638, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37333916

RESUMO

Objective: Autism spectrum disorder (ASD) is a highly heterogeneous neurodevelopmental disorder caused by a complex interaction between genetic and environmental risk factors. The balance between antioxidant capacity and oxidative stress (OS) induced free radicals may be crucial during the pathophysiological development of ASD. Methods: In this study, 96 children with ASD who met the diagnostic and statistical manual of mental disorders were collected, and the number of children in the typical development (TD) group was matched by 1:1. Digital PCR (dPCR) for telomere length (TL) expression in ASD in peripheral blood leukocytes. Urine levels of 8-hydroxy-2-deoxyguanosine (8-OHdG) content were measured by tandem triple quadrupole mass spectrometry and corrected by urinary creatinine levels. The levels of superoxide dismutase (SOD), catalase (CAT), and capacity (AOC) were detected by kits. Results: The TL of the ASD group was shorter than the TD group (p < 0.01) and had some accurate predictive significance for the identification of ASD (AUC = 0.632, 95% CI: 0.533-0.710, p = 0.002). Both 8-OHdG content and SOD activity in the ASD group were significantly higher than those in the TD group (p < 0.05). Shortened TL (Monofactor: 2.20 (1.22, 3.96), p = 0.009; Multifactor: 2.22 (1.22, 4.00), p = 0.008) and reduced CAT activity (Monofactor: 2.31 (1.28, 4.17), p = 0.006; Multifactor: 2.31 (1.28, 4.18), p = 0.006) are risk factors for the development of ASD, while reduced 8-OHdG content (Monofactor: 0.29 (0.14, 0.60), p = 0.001; Multifactor: 0.27 (0.13, 0.57), p = 0.001) and reduced SOD activity (Monofactor: 0.55 (0.31, 0.98), p = 0.042; Multifactor: 0.54 (0.30, 0.98), p = 0.042) are protective factors for the development of ASD. Conclusion: In this study, TL and OS were significantly different between the ASD group and the TD group. As guanine-rich telomere sequences were likely damaged by oxygen free radicals, creating OS, which is a factor in the incidence and progression of ASDs. In conclusion, oxidative damage occurs in the bodies of children with ASD, which may lead to sustained disease progression and severe clinical manifestations. We assume that timely supplementation of antioxidants is very likely to be a potential treatment for early intervention in children with ASD. Identification and detection of OS-related biomarkers may contribute to early diagnosis and timely interventions in young patients with ASD.

4.
J Virol ; 96(9): e0040022, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35442061

RESUMO

Porcine epidemic diarrhea virus (PEDV) is a highly pathogenic enteric coronavirus that causes high mortality in piglets. Interferon (IFN) responses are the primary defense mechanism against viral infection; however, viruses always evolve elaborate strategies to antagonize the antiviral action of IFN. Previous study showed that PEDV nonstructural protein 7 (nsp7), a component of the viral replicase polyprotein, can antagonize ploy(I:C)-induced type I IFN production. Here, we found that PEDV nsp7 also antagonized IFN-α-induced JAK-STAT signaling and the production of IFN-stimulated genes. PEDV nsp7 did not affect the protein and phosphorylation levels of JAK1, Tyk2, STAT1, and STAT2 or the formation of the interferon-stimulated gene factor 3 (ISGF3) complex. However, PEDV nsp7 prevented the nuclear translocation of STAT1 and STAT2. Mechanistically, PEDV nsp7 interacted with the DNA binding domain of STAT1/STAT2, which sequestered the interaction between karyopherin α1 (KPNA1) and STAT1, thereby blocking the nuclear transport of ISGF3. Collectively, these data reveal a new mechanism developed by PEDV to inhibit type I IFN signaling pathway. IMPORTANCE In recent years, an emerging porcine epidemic diarrhea virus (PEDV) variant has gained attention because of serious outbreaks of piglet diarrhea in China and the United States. Coronavirus nonstructural protein 7 (nsp7) has been proposed to act with nsp8 as part of an RNA primase to generate RNA primers for viral RNA synthesis. However, accumulating evidence indicates that coronavirus nsp7 can also antagonize type I IFN production. Our present study extends previous findings and demonstrates that PEDV nsp7 also antagonizes IFN-α-induced IFN signaling by competing with KPNA1 for binding to STAT1, thereby enriching the immune regulation function of coronavirus nsp7.


Assuntos
Janus Quinase 1 , Vírus da Diarreia Epidêmica Suína , Fator de Transcrição STAT1 , Transdução de Sinais , Proteínas não Estruturais Virais , alfa Carioferinas , Animais , Linhagem Celular , Interferons/metabolismo , Janus Quinase 1/metabolismo , Vírus da Diarreia Epidêmica Suína/genética , Fator de Transcrição STAT1/metabolismo , Suínos , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , alfa Carioferinas/metabolismo
5.
Phys Chem Chem Phys ; 22(23): 12967-12972, 2020 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-32490445

RESUMO

Tailoring the structures of nanomachines to achieve specific functions is one of the major challenges in chemistry. Disentangling the different movements of nanomachines is critical to characterize their functions. Here, the motions within one kind of molecular machine, a foldaxane, composed of a foldamer with a spring-like conformation on an axle have been examined at the molecular level. With the aid of molecular dynamics simulations and enhanced sampling methods, the free-energy landscape characterizing the shuttling of the foldaxane has been drawn. The calculated free-energy barrier, amounting to 20.7 kcal mol-1, is in good agreement with experiments. Further analysis reveals that the predominant contribution to the free-energy barrier stems from the disruption of the hydrogen bonds between the foldamer and the thread. In the absence of hydrogen bonding interactions between the terminals of the foldamer and the thread, shrinkage and swelling movements of the foldamer have been identified and investigated in detail. By deciphering the intricate mechanism of how the foldaxane shuttles, our understanding of motions within molecular machines is expected to be improved, which will, in turn, assist the construction of molecular machines with specific functions.

6.
Mol Med Rep ; 20(2): 1212-1220, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31173226

RESUMO

Renal cell carcinoma (RCC) is a common malignant tumor globally. The overall survival of patients with RCC is poor; one important factor is tumor heterogeneity. Ubiquitin­conjugating enzyme E2T (UBE2T) has been reported to act as an oncogene in various types of cancer; however, its role in RCC has yet to be investigated. In the present study, UBE2T was demonstrated via reverse transcription­quantitative PCR analysis to be significantly upregulated in RCC samples and cell lines compared with in normal tissue and cells. Additionally, UBE2T expression was significantly associated with late tumor stage and high grade in patients with RCC, and patients with high UBE2T expression exhibited poor prognosis compared with patients with low expression. Following knockdown of UBE2T in 786­O cells using RNA interference technology, the proliferation and colony formation of cells were inhibited as determined by an MTT assay and crystal violet staining, respectively; however, the migration and invasion of 786­O cells were not affected, as determined by wound­healing assay and Transwell assays, respectively. Xenograft RCC tumor growth in vivo was also significantly suppressed. The expression levels of two mesenchymal cell markers, N­cadherin and vimentin, were reduced following UBE2T knockdown, whereas E­cadherin and fibronectin levels were increased as determined by western blotting, indicating that epithelial­mesenchymal transition was suppressed. In addition, the phosphorylation levels of PI3K, Akt and mTOR were notably decreased following UBE2T knockdown, but were increased when UBE2T was overexpressed. Wortmannin, an Akt inhibitor, reversed the UBE2T overexpression­induced increase in the phosphorylation of PI3K, Akt and mTOR. Similarly, the UBE2T overexpression­induced promotion of 786­O cell proliferation was also attenuated by wortmannin. In conclusion, UBE2T promoted the proliferation of RCC cells by regulating PI3K/Akt signaling, suggesting it may be a novel target for the treatment of patients with RCC.


Assuntos
Carcinoma de Células Renais/metabolismo , Proliferação de Células , Neoplasias Renais/metabolismo , Transdução de Sinais , Enzimas de Conjugação de Ubiquitina/metabolismo , Adolescente , Adulto , Animais , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/fisiopatologia , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Renais/genética , Neoplasias Renais/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Adulto Jovem
7.
Oncol Lett ; 15(4): 4323-4329, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29541199

RESUMO

Dysregulation of microRNAs (miRNAs/miRs) is frequently associated with cancer progression. Altered expression of miR-211 has been observed in various types of human cancer; however, its expression and role in prostate cancer (PCa) remains unknown. In the present study, the expression of miR-211 in PCa cell lines and tissues was measured by reverse transcription-quantitative PCR (qPCR), revealing that miR-211 was downregulated in PCa cell lines and tissues. Further analysis revealed that low miR-211 was associated with the tumor stage and Gleason score. With the assistance of miR-211 mimics and inhibitor, it was also revealed that the overexpression of miR-211 could inhibit PCa cell proliferation in vitro. Conversely, downregulated miR-211 expression promotes PCa cell proliferation. In addition, the secreted protein acidic and rich in cysteine (SPARC) was identified as a target of miR-211 in the PCa cell lines, and SPARC expression was inversely associated with miR-211. In conclusion, it was demonstrated that the miR-211 expression was downregulated in PCa cell lines and tissues. Additionally, miR-211 could inhibit PCa cell proliferation partially by downregulating SPARC. Therefore, miR-211 may be a potential therapeutic target for PCa treatment in the future.

8.
J Virol ; 91(3)2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27881655

RESUMO

Linear ubiquitination, a newly discovered posttranslational modification, is catalyzed by the linear ubiquitin chain assembly complex (LUBAC), which is composed of three subunits: one catalytic subunit HOIP and two accessory molecules, HOIL-1L and SHARPIN. Accumulating evidence suggests that linear ubiquitination plays a crucial role in innate immune signaling and especially in the activation of the NF-κB pathway by conjugating linear polyubiquitin chains to NF-κB essential modulator (NEMO, also called IKKγ), the regulatory subunit of the IKK complex. Porcine reproductive and respiratory syndrome virus (PRRSV), an Arterivirus that has devastated the swine industry worldwide, is an ideal model to study the host's disordered inflammatory responses after viral infection. Here, we found that LUBAC-induced NF-κB and proinflammatory cytokine expression can be inhibited in the early phase of PRRSV infection. Screening the PRRSV-encoded proteins showed that nonstructural protein 1α (nsp1α) suppresses LUBAC-mediated NF-κB activation and its CTE domain is required for the inhibition. Mechanistically, nsp1α binds to HOIP/HOIL-1L and impairs the interaction between HOIP and SHARPIN, thus reducing the LUBAC-dependent linear ubiquitination of NEMO. Moreover, PRRSV infection also blocks LUBAC complex formation and NEMO linear-ubiquitination, the important step for transducing NF-κB signaling. This unexpected finding demonstrates a previously unrecognized role of PRRSV nsp1α in modulating LUBAC signaling and explains an additional mechanism of immune modulation by PRRSV. IMPORTANCE: Porcine reproductive and respiratory syndrome (PRRS) is one of the most important veterinary infectious diseases in countries with intensive swine industries. PRRS virus (PRRSV) infection usually suppresses proinflammatory cytokine expression in the early stage of infection, whereas it induces an inflammatory storm in the late stage. However, precisely how the virus is capable of doing so remains obscure. In this study, we found that by blocking the interaction of its catalytic subunit HOIP and accessory molecule SHARPIN, PRRSV can suppress NF-κB signal transduction in the early stage of infection. Our findings not only reveal a novel mechanism evolved by PRRSV to regulate inflammatory responses but also highlight the important role of linear ubiquitination modification during virus infection.


Assuntos
Complexos Multiproteicos/metabolismo , NF-kappa B/metabolismo , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/metabolismo , Ubiquitina/metabolismo , Proteínas não Estruturais Virais/metabolismo , Animais , Proteínas de Transporte/metabolismo , Linhagem Celular , Células Cultivadas , Humanos , Quinase I-kappa B/metabolismo , NF-kappa B/antagonistas & inibidores , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transdução de Sinais , Suínos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Proteínas não Estruturais Virais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...