Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36298133

RESUMO

It is difficult for traditional signal-recognition methods to effectively classify and identify multiple emitter signals in a low SNR environment. This paper proposes a multi-emitter signal-feature-sorting and recognition method based on low-order cyclic statistics CWD time-frequency images and the YOLOv5 deep network model, which can quickly dissociate, label, and sort the multi-emitter signal features in the time-frequency domain under a low SNR environment. First, the denoised signal is extracted based on the low-order cyclic statistics of the typical modulation types of radiation source signals. Second, the time-frequency graph of multisource signals was obtained through CWD time-frequency analysis. The cyclic frequency was controlled to balance the noise suppression effect and operation time to achieve noise suppression of multisource signals at a low SNR. Finally, the YOLOv5s deep network model is used as a classifier to sort and identify the received signals from multiple radiation sources. The method proposed in this paper has high real-time performance. It can identify the radiation source signals of different modulation types with high accuracy under the condition of a low SNR.


Assuntos
Aprendizado Profundo , Razão Sinal-Ruído , Ruído
2.
Sensors (Basel) ; 20(22)2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33182697

RESUMO

To realize the blind estimation of binary phase shift keying (BPSK) signal, this paper describe a new relational expression among the state of Duffing oscillator excited by BPSK signal, the pseudo-random code of BPSK signal, and the difference frequency between the to-be-detect signal and internal drive force signal of Duffing oscillator. Two output characteristics of Duffing oscillators excited by BPSK signals named implied periodicity and pilot frequency array synchronization are presented according to the different chaotic states of Duffing oscillator. Then two blind estimation methods for the carrier frequency and pseudo-random sequence of the BPSK signal are proposed based on these two characteristics, respectively. These methods are shown to have a significant effect on the parameter estimation of BPSK signals with no prior knowledge, even at very low signal-to-noise ratios (SNRs).

3.
Appl Opt ; 59(19): 5821-5829, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32609714

RESUMO

Spatial modulation (SM) has been employed in indoor visible light communication (VLC) systems because of its high data rate and low complexity transmission. However, the activated LED may have poor channel conditions in conventional SM VLC systems, which leads to significant performance degradation. In this paper, a cooperative incremental hybrid decode-amplify-forward (IHDAF) protocol-based SM-index modulation (SM-IM) VLC system is proposed. For the SM-IM scheme, the spatial information and the modulated information are jointly transmitted in one symbol via the optimal VLC channel. The system model and the theoretical outage probability of the proposed IHDAF protocol-based SM-IM VLC system are presented. Numerical results show that the outage probability of the IHDAF protocol-based SM-IM VLC system can be significantly improved compared with the traditional amplify-and-forward and decode-and-forward protocol-based SM VLC systems. Additionally, the power allocation of the proposed scheme is also studied.

4.
Sensors (Basel) ; 19(9)2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31083415

RESUMO

In this paper, an improved two-dimensional (2-D) direction of arrival (DOA) estimation algorithm for L-shaped nested arrays is proposed. Unlike the approach for a classical nested array, which use the auto-correlation matrix (ACM) to increase the degrees of freedom (DOF), we utilize the cross-correlation matrix (CCM) of different sub-arrays to generate two long consecutive virtual arrays. These acquire a large number of DOF without redundant elements and eliminate noise effects. Furthermore, we reconstruct the CCM based on the singular value decomposition (SVD) operation in order to reduce the perturbation of noise for small numbers of samples. To cope with the matrix rank deficiency of the virtual arrays, we construct the full rank equivalent covariance matrices by using the output and its conjugate vector of virtual arrays. The unitary estimation of signal parameters via rotational invariance technique (ESPRIT) is then performed on the covariance matrices to obtain the DOA of incident signals with low computational complexity. Finally, angle pairing is achieved by deriving the equivalent signal vector of the virtual arrays using the estimated angles. Numerical simulation results show that the proposed algorithm not only provides more accurate 2-D DOA estimation performance with low complexity, but also achieves angle estimation for small numbers of samples compared to existing similar methods.

5.
Sensors (Basel) ; 18(12)2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30487458

RESUMO

Angle estimation methods in two-dimensional co-prime planar arrays have been discussed mainly based on peak searching and sparse recovery. Peak searching methods suffer from heavy computational complexity and sparse recovery methods face some problems in selecting the regularization parameters. In this paper, we propose an improved trilinear model-based method for angle estimation for co-prime planar arrays in the view of trilinear decomposition, namely parallel factor analysis. Due to the principle of trilinear decomposition, our method does not require peak searching and can conduct auto-pairing easily, which can reduce the computational loads and avoid parameter selection problems. Furthermore, we exploit the virtual array concept of the whole co-prime planar array through the cross-correlation matrix obtained from the received signal data and present a matrix reconstruction method using the Khatri⁻Rao product to tackle the matrix rank deficiency problem in the virtual array condition. The simulation results show that our proposed method can not only achieve high estimation accuracy with low complexity compared to other similar approaches, but also utilize limited sensor number to implement the angle estimation tasks.

6.
Sensors (Basel) ; 18(2)2018 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-29419814

RESUMO

For the conventional FDA-MIMO (frequency diversity array multiple-input-multiple-output) Radar with uniform frequency offset and uniform linear array, the DOFs (degrees of freedom) of the adaptive beamformer are limited by the number of elements. A better performance-for example, a better suppression for strong interferences and a more desirable trade-off between the main lobe and side lobe-can be achieved with a greater number of DOFs. In order to obtain larger DOFs, this paper researches the signal model of the FDA-MIMO Radar with nested frequency offset and nested array, then proposes an improved adaptive beamforming method that uses the augmented matrix instead of the covariance matrix to calculate the optimum weight vectors and can be used to improve the output performances of FDA-MIMO Radar with the same element number or reduce the element number while maintain the approximate output performances such as the received beampattern, the main lobe width, side lobe depths and the output SINR (signal-to-interference-noise ratio). The effectiveness of the proposed scheme is verified by simulations.

7.
Sensors (Basel) ; 17(9)2017 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-28878174

RESUMO

Currently, frequency-modulated continuous-wave (FMCW) proximity sensors are widely used. However, they suffer from a serious sweep jamming problem, which significantly reduces the ranging performance. To improve its anti-jamming capability, this paper analyzed the response mechanism of a proximity sensor with the existence of real target echo signals and sweep jamming, respectively. Then, a multi-channel harmonic timing sequence detection method, using the spectrum components' distribution difference between the real echo signals and sweep jamming, is proposed. Moreover, a novel fast Fourier transform (FFT)-based implementation was employed to extract multi-channel harmonic information. Compared with the traditional band-pass filter (BPF) implementation, this novel realization scheme only computes FFT once, in each transmission cycle, which significantly reduced hardware resource consumption and improved the real-time performance of the proximity sensors. The proposed method was implemented and proved to be feasible through the numerical simulations and prototype experiments. The results showed that the proximity sensor utilizing the proposed method had better anti-sweep jamming capability and ranging performance.

8.
Springerplus ; 5(1): 922, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27386366

RESUMO

This paper describes a linear frequency modulated continuous wave (LFMCW) detector which is designed for a collision avoidance radar. This detector can estimate distance between the detector and pedestrians or vehicles, thereby it will help to reduce the likelihood of traffic accidents. The detector consists of a transceiver and a signal processor. A novel structure based on the intermediate frequency signal (IFS) is designed for the transceiver which is different from the traditional LFMCW transceiver using the beat frequency signal (BFS) based structure. In the signal processor, a novel fractional Fourier transform (FRFT) based differential distance estimation (DDE) method is used to detect the distance. The new IFS based structure is beneficial for the FRFT based DDE method to reduce the computation complexity, because it does not need the scan of the optimal FRFT order. Low computation complexity ensures the feasibility of practical applications. Simulations are carried out and results demonstrate the efficiency of the detector designed in this paper.

9.
J Med Syst ; 37(5): 9972, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23996083

RESUMO

The telecare medicine information system (TMIS) allows patients and doctors to access medical services or medical information at remote sites. Therefore, it could bring us very big convenient. To safeguard patients' privacy, authentication schemes for the TMIS attracted wide attention. Recently, Tan proposed an efficient biometrics-based authentication scheme for the TMIS and claimed their scheme could withstand various attacks. However, in this paper, we point out that Tan's scheme is vulnerable to the Denial-of-Service attack. To enhance security, we also propose an improved scheme based on Tan's work. Security and performance analysis shows our scheme not only could overcome weakness in Tan's scheme but also has better performance.


Assuntos
Segurança Computacional , Sistemas de Informação , Algoritmos , Sistemas Computacionais , Confidencialidade , Humanos , Telemedicina
10.
J Med Syst ; 37(2): 9919, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23334801

RESUMO

With the development of Internet, patients could enjoy health-care delivery services through telecare medicine information systems (TMIS) in their home. To control the access to remote medical servers' resources, many authentication schemes using smart cards have been proposed. However, the performance of these schemes is not satisfactory since modular exponential operations are used in these schemes. In the paper, we propose a chaotic map-based authentication scheme for telecare medicine information systems. The security and performance analysis shows our scheme is more suitable for TMIS.


Assuntos
Segurança Computacional , Confidencialidade , Sistemas de Informação , Telemedicina , Interface Usuário-Computador , Conceitos Matemáticos , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA