Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Synth Biol ; 12(4): 1204-1215, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37017652

RESUMO

Haloalkaliphilic Thioalkalivibrio versutus, a dominant species for sulfide removal, has attracted increasing attention. However, research on T. versutus is limited by the lack of genetic manipulation tools. In this work, we developed a CRISPR/AsCas12a-mediated system in T. versutus for an efficient and implementable genome editing workflow. Compared to the CRISPR/Cas9-mediated system, the CRISPR/AsCas12a system exhibited enhanced editing efficiency. Additionally, as Cas12a is capable of processing the crRNA maturation independently, the CRISPR/AsCas12a system allowed multiplex gene editing and large-fragment DNA knockout by expressing more than one crRNA under the control of one promoter. Using the CRISPR/AsCas12a system, five key genes of the elemental sulfur oxidation pathway were knocked out. Simultaneous deletion of the rhd and tusA genes disrupted the ability of T. versutus to metabolize elemental sulfur, resulting in a 24.7% increase in elemental sulfur generation and a 15.2% reduction in sulfate production. This genome engineering strategy significantly improved our understanding of sulfur metabolism in Thioalkalivibrio spp.


Assuntos
Ectothiorhodospiraceae , Edição de Genes , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , Ectothiorhodospiraceae/genética , Ectothiorhodospiraceae/metabolismo , Enxofre/metabolismo
2.
Front Microbiol ; 13: 1005480, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246227

RESUMO

Remarkably, a hydrolase from Ideonella sakaiensis 201-F6, termed PETase, exhibits great potential in polyethylene terephthalate (PET) waste management due to it can efficiently degrade PET under moderate conditions. However, its low yield and poor accessibility to bulky substrates hamper its further industrial application. Herein a multigene fusion strategy is introduced for constructing a hydrophobic cell surface display (HCSD) system in Escherichia coli as a robust, recyclable, and sustainable whole-cell catalyst. The truncated outer membrane hybrid protein FadL exposed the PETase and hydrophobic protein HFBII on the surface of E. coli with efficient PET accessibility and degradation performance. E. coli containing the HCSD system changed the surface tension of the bacterial solution, resulting in a smaller contact angle (83.9 ± 2° vs. 58.5 ± 1°) of the system on the PET surface, thus giving a better opportunity for PETase to interact with PET. Furthermore, pretreatment of PET with HCSD showed rougher surfaces with greater hydrophilicity (water contact angle of 68.4 ± 1° vs. 106.1 ± 2°) than the non-pretreated ones. Moreover, the HCSD system showed excellent sustainable degradation performance for PET bottles with a higher degradation rate than free PETase. The HCSD degradation system also had excellent stability, maintaining 73% of its initial activity after 7 days of incubation at 40°C and retaining 70% activity after seven cycles. This study indicates that the HCSD system could be used as a novel catalyst for efficiently accelerating PET biodegradation.

3.
Eng Life Sci ; 21(10): 693-708, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34690639

RESUMO

Biological desulfurization offers several remarkably environmental advantages of operation at ambient temperature and atmospheric pressure, no demand of toxic chemicals as well as the formation of biologically re-usable sulfur (S0), which has attracted increasing attention compared to conventionally physicochemical approaches in removing hydrogen sulfide from sour gas. However, the low biomass of SOB, the acidification of process solution, the recovery of SOB, and the selectivity of bio-S0 limit its industrial application. Therefore, more efforts should be made in the improvement of the BDS process for its industrial application via different research perspectives. This review summarized the recent research advances in the microbial capture of hydrogen sulfide from sour gas based on strain modification, absorption enhancement, and bioreactor modification. Several efficient solutions to limitations for the BDS process were proposed, which paved the way for the future development of BDS industrialization.

4.
Bioresour Technol ; 337: 125367, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34139561

RESUMO

Haloalkaliphilic Thioalkalivibrio, a dominant genus for sulfide removal, has attracted growing interest. However, the bacterial biological response to this process's final product, sulfate, has not been well-studied. Here, thiosulfate oxidation and sulfur formation by T. versutus D301 were being enhanced with increasing sulfate supply. With the addition of 0.73 M sulfate, the thiosulfate utilization rate and sulfur production were improved by 68.1% and 120.1% compared with carbonate-grown control at the same salinity (1.8 M). For sulfate-grown cells, based on metabolic analysis, the downregulation of central carbon metabolism indicated that sulfate triggered a decrease in energy conservation efficiency. Additionally, the gene expression analysis further revealed that sulfate induced the inhibition of sulfur to sulfate oxidation, causing the upregulation of thiosulfate to sulfur oxidation for providing cells with additional energy. This study enhances researchers' understanding regarding the sulfate effect on the bio-desulfurization process and presents a new perspective of optimizing the biotechniques.


Assuntos
Sulfatos , Enxofre , Ectothiorhodospiraceae , Oxirredução , Poder Psicológico
5.
Bioresour Technol ; 317: 124018, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32836035

RESUMO

Complicated production procedures and superior characteristics of nano-sized sulfur elevate its price to 25-40 fold higher than micrograde kind. Also, natural gas hydrogen sulfide levels are restricted because of its toxic environmental consequences. Thioalkalivibrio versutus is a polyextremophilic industrial autotroph with high natural gas desulfurization capability. Here, nanometric (>50 nm) sulfur bioproduction using T. versutus while desulfurizing natural gas was validated. Also, this production was enhanced by 166.7% via lowering sulfate production by 55.1%. A specially-developed CRISPR system, with 42% editing efficiency, simplified the genome editing workflow scheme for this challenging bacterium. In parallel, sulfur metabolism was uncovered using proteins mining and transcriptome studies for defining sulfate-producing key genes (heterodisulfide reductase-like complex, sulfur dioxygenase, sulfite dehydrogenase and sulfite oxidase). This study provided cost-effective nanometric sulfur production and improved this production using a novel CRISPR strategy, which could be suitable for industrial polyextremophiles, after uncovering sulfur pathways in T. versutus.


Assuntos
Ectothiorhodospiraceae , Oxirredução , Sulfatos , Enxofre
6.
Bioresour Technol ; 288: 121486, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31128536

RESUMO

Highly toxic and flammable H2S gas has become an environmental threat. Because of its ability to efficiently remove H2S by oxidation, Thioalkalivibrio versutus is gaining more attention. Haloalkaliphilic autotrophs, like the bio-desulfurizing T. versutus, grow weakly. Weak growth makes any trial for developing potent genetic tools required for genetic engineering far from achieved. In this study, the fed-batch strategy improved T. versutus growth by 1.6 fold in maximal growth rate, 9-fold in O.D600 values and about 3-fold in biomass and protein productions. The strategy also increased the favorable desulfurization product, sulfur, by 2.7 fold in percent yield and 1.5-fold in diameter. A tight iron-inducible expression system for T. versutus was successfully developed. The system was derived from fed-batch cultivation coupled with new design, build, test and validate (DPTV) approach. The inducible system was validated by toxin expression. Fed-batch cultivation coupled with DPTV approach could be applied to other autotrophs.


Assuntos
Ectothiorhodospiraceae , Biomassa , Oxirredução , Enxofre
8.
Sci Rep ; 6: 25763, 2016 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-27161047

RESUMO

Ethanol fermentation requires oxygen to maintain high biomass and cell viability, especially under very-high-gravity (VHG) condition. In this work, fermentation redox potential (ORP) was applied to drive the aeration process at low dissolved oxygen (DO) levels, which is infeasible to be regulated by a DO sensor. The performance and characteristics of flocculating yeast grown under 300 and 260 g glucose/L conditions were subjected to various aeration strategies including: no aeration; controlled aeration at -150, -100 and -50 mV levels; and constant aeration at 0.05 and 0.2 vvm. The results showed that anaerobic fermentation produced the least ethanol and had the highest residual glucose after 72 h of fermentation. Controlled aerations, depending on the real-time oxygen demand, led to higher cell viability than the no-aeration counterpart. Constant aeration triggered a quick biomass formation, and fast glucose utilization. However, over aeration at 0.2 vvm caused a reduction of final ethanol concentration. The controlled aeration driven by ORP under VHG conditions resulted in the best fermentation performance. Moreover, the controlled aeration could enhance yeast flocculating activity, promote an increase of flocs size, and accelerate yeast separation near the end of fermentation.


Assuntos
Etanol/metabolismo , Fermentação , Hipergravidade , Saccharomyces cerevisiae/metabolismo , Aerobiose , Biomassa , Floculação , Glucose/metabolismo , Viabilidade Microbiana , Oxirredução , Oxigênio/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...