Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(1): 1226-1236, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38153997

RESUMO

Dielectric elastomer transducers (DETs), with a dielectric elastomer (DE) film sandwiched between two compliant electrodes, are highly sought after in the fields of soft robotics, energy harvesting, and human-machine interaction. To achieve a high-performance DET, it is essential to develop electrodes with high conductivity, strain-insensitive resistance, and adaptability. Herein, we design an electrode (Supra-LMNs) based on multiple dynamic bond cross-linked supramolecular networks (Ns) and liquid metal (LM), which realizes high conductivity (up to 16,000 S cm-1), negligible resistance changes at high strain (1.3-fold increase at 1000% strain), instantaneous self-healability at ambient temperature, and rapid recycling. The conductive pathway can be activated through simple friction by transmitting stress through the silver nanowires (AgNWs) and cross-linking sites of LM particles. This method is especially attractive for printing circuits on flexible substrates, especially DE films. Utilized as dielectric elastomer generator (DEG) electrodes, it reduces the charge loss by 3 orders of magnitude and achieves high generating energy density and energy conversion efficiency on a low-resistance load. Additionally, serving as sensor (DES) and actuator (DEA) electrodes, it enables a highly sensitive sensing capability and complex interaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...