Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Clin Exp Med ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38318774

RESUMO

BACKGROUND: Rapamycin is known to induce autophagy, promote cell survival and inhibit the progression of diabetic nephropathy (DN). OBJECTIVES: The aim of this study was to examine the role of autophagy in the treatment of DN with rapamycin to provide the basis for the DN treatment with rapamycin. MATERIAL AND METHODS: Human mesangial cells (HMC) were cultured in a constant temperature incubator with 5% CO2, at 37°C and saturated humidity. Cells were divided into 5 groups and the 5-ethynyl-2-deoxyuridine (EdU) cell proliferation assay was used to determine cell proliferation. Flow cytometry was used to determine cell apoptosis, while GFP-RFP-LC3 showed autophagy flow. Western blot was employed to detect the expression of autophagy-related proteins LC3-II/LC3-I and P62. Enzyme-linked immunosorbent assay (ELISA) was used to determine the contents of type IV collagen fiber (Col4), hyaluronic acid (HA) and laminin (LA) in the extracellular matrix (ECM). RESULTS: Cell proliferation was the lowest in the hyperglycemic group. Additionally, the hyperglycemic group displayed the lowest number of autolysosomes compared to other groups. In contrast, the rapamycin group exhibited the highest number of autolysosomes. The LC3-II/LC3-I ratio was also the lowest in the hyperglycemic group, measuring 0.53 (0.50-0.58), while the expression level of P62 was significantly higher in that group at 0.98 (0.95-1.01) compared to other groups. Upon the introduction of rapamycin, the LC3-II/LC3-I ratio was significantly increased at 2.21 (1.95-2.21), and P62 was significantly decreased 0.38 (0.38-0.39) compared to the hyperglycemic group. Both changes were statistically significant, with p-values of 0.034 and 0.010, respectively. Enzyme-linked immunosorbent assay was employed to detect Col4, HA and LA content. The study findings demonstrated significantly higher levels of glucose in the hyperglycemic group in comparison to other groups. In contrast, the rapamycin group exhibited significantly lower levels of glucose than the hyperglycemic group, yet the difference was not statistically significant. CONCLUSIONS: Hyperglycemic can inhibit the autophagic activity of HMC, promote cell apoptosis, enhance ECM accumulation, and facilitate the DN progression. In contrast, rapamycin can elicit autophagy, decrease mesangial matrix proliferation, and therefore impede DN progression.

2.
bioRxiv ; 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38014339

RESUMO

Despite strong evidence supporting the involvement of both apolipoprotein E4 (APOE4) and microglia in Alzheimer's Disease (AD) pathogenesis, the effects of microglia on neuronal APOE4-driven AD pathogenesis remain elusive. Here, we examined such effects utilizing microglial depletion in a chimeric model with human neurons in mouse hippocampus. Specifically, we transplanted homozygous APOE4, isogenic APOE3, and APOE-knockout (APOE-KO) induced pluripotent stem cell (iPSC)-derived human neurons into the hippocampus of human APOE3 or APOE4 knock-in mice, and depleted microglia in half the chimeric mice. We found that both neuronal APOE and microglial presence were important for the formation of Aß and tau pathologies in an APOE isoform-dependent manner (APOE4 > APOE3). Single-cell RNA-sequencing analysis identified two pro-inflammatory microglial subtypes with high MHC-II gene expression that are enriched in chimeric mice with human APOE4 neuron transplants. These findings highlight the concerted roles of neuronal APOE, especially APOE4, and microglia in AD pathogenesis.

3.
Nat Neurosci ; 26(12): 2104-2121, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37957317

RESUMO

Apolipoprotein E4 (APOE4) is the strongest genetic risk factor for late-onset Alzheimer's disease (LOAD), leading to earlier age of clinical onset and exacerbating pathologies. There is a critical need to identify protective targets. Recently, a rare APOE variant, APOE3-R136S (Christchurch), was found to protect against early-onset AD in a PSEN1-E280A carrier. In this study, we sought to determine if the R136S mutation also protects against APOE4-driven effects in LOAD. We generated tauopathy mouse and human iPSC-derived neuron models carrying human APOE4 with the homozygous or heterozygous R136S mutation. We found that the homozygous R136S mutation rescued APOE4-driven Tau pathology, neurodegeneration and neuroinflammation. The heterozygous R136S mutation partially protected against APOE4-driven neurodegeneration and neuroinflammation but not Tau pathology. Single-nucleus RNA sequencing revealed that the APOE4-R136S mutation increased disease-protective and diminished disease-associated cell populations in a gene dose-dependent manner. Thus, the APOE-R136S mutation protects against APOE4-driven AD pathologies, providing a target for therapeutic development against AD.


Assuntos
Doença de Alzheimer , Tauopatias , Animais , Humanos , Camundongos , Doença de Alzheimer/genética , Apolipoproteína E3/genética , Apolipoproteína E4/genética , Mutação/genética , Doenças Neuroinflamatórias , Tauopatias/genética
4.
Cell Rep ; 42(10): 113252, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37863057

RESUMO

Apolipoprotein E4 (APOE4) is an important driver of Tau pathology, gliosis, and degeneration in Alzheimer's disease (AD). Still, the mechanisms underlying these APOE4-driven pathological effects remain elusive. Here, we report in a tauopathy mouse model that APOE4 promoted the nucleocytoplasmic translocation and release of high-mobility group box 1 (HMGB1) from hippocampal neurons, which correlated with the severity of hippocampal microgliosis and degeneration. Injection of HMGB1 into the hippocampus of young APOE4-tauopathy mice induced considerable and persistent gliosis. Selective removal of neuronal APOE4 reduced HMGB1 translocation and release. Treatment of APOE4-tauopathy mice with HMGB1 inhibitors effectively blocked the intraneuronal translocation and release of HMGB1 and ameliorated the development of APOE4-driven gliosis, Tau pathology, neurodegeneration, and myelin deficits. Single-nucleus RNA sequencing revealed that treatment with HMGB1 inhibitors diminished disease-associated and enriched disease-protective subpopulations of neurons, microglia, and astrocytes in APOE4-tauopathy mice. Thus, HMGB1 inhibitors represent a promising approach for treating APOE4-related AD.


Assuntos
Doença de Alzheimer , Proteína HMGB1 , Tauopatias , Animais , Camundongos , Doença de Alzheimer/patologia , Apolipoproteína E4/genética , Gliose , Camundongos Transgênicos , Tauopatias/tratamento farmacológico
5.
Nat Aging ; 3(3): 275-296, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-37118426

RESUMO

Apolipoprotein E4 (APOE4) is the strongest known genetic risk factor for late-onset Alzheimer's disease (AD). Conditions of stress or injury induce APOE expression within neurons, but the role of neuronal APOE4 in AD pathogenesis is still unclear. Here we report the characterization of neuronal APOE4 effects on AD-related pathologies in an APOE4-expressing tauopathy mouse model. The selective genetic removal of APOE4 from neurons led to a significant reduction in tau pathology, gliosis, neurodegeneration, neuronal hyperexcitability and myelin deficits. Single-nucleus RNA-sequencing revealed that the removal of neuronal APOE4 greatly diminished neurodegenerative disease-associated subpopulations of neurons, oligodendrocytes, astrocytes and microglia whose accumulation correlated to the severity of tau pathology, neurodegeneration and myelin deficits. Thus, neuronal APOE4 plays a central role in promoting the development of major AD pathologies and its removal can mitigate the progressive cellular and tissue alterations occurring in this model of APOE4-driven tauopathy.


Assuntos
Doenças Neurodegenerativas , Tauopatias , Camundongos , Animais , Apolipoproteína E4/genética , Doenças Neurodegenerativas/genética , Bainha de Mielina/metabolismo , Gliose/genética , Tauopatias/genética , Neurônios/metabolismo
6.
Vaccines (Basel) ; 10(8)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36016223

RESUMO

B-cell lymphoma is a group of malignant proliferative diseases originating from lymphoid tissue with different clinical manifestations and biological characteristics. It can occur in any part of the body, accounting for more than 80% of all lymphomas. The present study aimed to construct bispecific single-domain antibodies against CD20 and CD3 and to evaluate their function in killing tumor cells in vitro. A Bactrian camel was immunized with a human CD20 extracellular peptide, and the VHH gene was cloned and ligated into a phagemid vector to construct the phage antibody display library. A phage antibody library with a size of 1.2 × 108 was successfully constructed, and the VHH gene insertion rate was 91.7%. Ninety-two individual clones were randomly picked and screened by phage ELISA. Six strains with the high binding ability to human CD20 were named 11, 30, 71, 72, 83, and 92, and induced expression and purification were performed to obtain soluble CD20 single-domain antibodies. The obtained single-domain antibodies could specifically bind to human CD20 polypeptide and cell surface-expressed CD20 molecules in ELISA, Western blot, and cell immunofluorescence assays. The anti-CD20/CD3 bispecific nanobody (BsNb) was successfully constructed by fusing the anti-CD20 VHH gene with the anti-CD3 VHH and the bispecific single-domain antibody was expressed, purified, and validated. Anti-CD20/CD3 BsNb can specifically bind CD20 molecules on the surface of human lymphoma Raji cells and CD3 molecules on the surface of T cells in flow cytometry analysis and effectively mediate peripheral blood mononuclear cells (PBMCs) target Raji cells with a killing efficiency of up to 30.4%, as measured by the lactate dehydrogenase (LDH) method. The release of hIFN-γ from PBMCs during incubation with anti-CD20/CD3 BsNb was significantly higher than that of the control group (p < 0.01). The anti-CD20/CD3 BsNb could maintain 80% binding activity after incubation with human serum at 37 °C for 48 h. These results indicated the strong antitumor effect of the constructed anti-CD20/CD3 BsNb and laid the foundation for the further development of antitumor agents and the clinical application of anti-CD20/CD3 BsNb.

7.
AMB Express ; 12(1): 80, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35723787

RESUMO

Adenovirus belongs to the family of Adenoviridae. As a vaccine carrier, it has high safety and stimulates the body to produce cellular immunity and humoral immunity. This study prepared an adenoviral vector-specific single-domain antibody for use in adenovirus identification and purification. We successfully constructed a single domain antibody phage display library with a capacity of 1.8 × 109 by immunizing and cloning the VHH gene from Bactrian camel. After the second round of biopanning, clones specific for adenovirus were screened using phage ELISA. Twenty-two positive clones were obtained, and two clones with the highest binding affinity from ELISA were selected and named sdAb 5 and sdAb 31 for further application. The recombinant single-domain antibody was solublely expressed in E. coli and specifically bound to adenoviruses rAd26, ChAd63 and HAd5 in ELISA and live cell immunofluorescence assays. We established an effective method for immunoaffinity purification of adenovirus by immobilizing the single domain antibody to Sepharose beads, and it may be used to selectively capture adenoviruses from cell culture medium. The preparation of the adenovirus-specific single-domain antibody lays a foundation for the one-step immunoaffinity purification and identification of adenoviruses.

8.
Neurotox Res ; 39(6): 2042-2055, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34499332

RESUMO

Aluminum is a widespread environmental neurotoxicant that can induce Alzheimer's disease (AD)-like damage, such as neuronal injury and impairment of learning and memory. Several studies have shown that aluminum could reduce the synaptic plasticity, but its molecular mechanism remains unclear. In this study, rats were treated with aluminum maltol (Al(mal)3) to establish a toxic animal model and PMA was used to interfere with the expression of PKC. The Morris water maze and open field test were used to investigate the behavioral changes of the rats. Western blotting and RT-PCR were used to detect the expression levels of NMDAR subunits, PKC and CaMKII. The results showed that Al(mal)3 damaged learning and memory function and reduced anxiety in rats. During this process, the expression of PKC was downregulated and it inhibited the expression of NMDARs through the phosphorylation of CaMKII.


Assuntos
Alumínio/toxicidade , Aprendizagem/efeitos dos fármacos , Memória/efeitos dos fármacos , Proteína Quinase C/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Western Blotting , Relação Dose-Resposta a Droga , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Teste do Labirinto Aquático de Morris/efeitos dos fármacos , Teste de Campo Aberto/efeitos dos fármacos , Proteína Quinase C/fisiologia , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Receptores de N-Metil-D-Aspartato/fisiologia
9.
ACS Chem Neurosci ; 12(17): 3250-3265, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34415727

RESUMO

Aluminum is an environmental neurotoxin that comes extensively in contact with human beings. Animal and human studies demonstrated that aluminum exposure increases the deposition of beta amyloid proteins in the brain as it was observed in Alzheimer's disease. The purpose of this study was to investigate whether miR-29a/b1 affected the expression of beta-secrete enzymes (BACE1) in the process of amyloid ß-protein (Aß) deposition caused by aluminum exposure. The study was performed using two different cell lines. Our results showed that after rat primary cortical neurons were exposed to aluminum, BACE1 gene and protein levels increased to different degrees, and the expression level of Aß1-42 increased. In aluminum-exposed groups, the expression of miR-29a and miR-29b1 decreased, while the expression of amyloid protein Aß1-42 and BACE1 increased. In miRs transfection groups, the expression of amyloid protein Aß1-42 and BACE1 decreased. Aluminum may affect the expression of BACE1 by lowering miR-29a and miR-29b1. AEK293 cells were utilized in this research since they present elevated levels of miR-29a and miR-29b1. After HEK293 cells were exposed to aluminum alone, BACE1 mRNA and BACE1 protein expression levels increased with the increase of aluminum exposure dose (p < 0.05), and the level of Aß1-42 also increased (p < 0.05). Compared with the group exposed to aluminum alone at the same doses, the expression levels of BACE1 mRNA and BACE1 protein in the miRs transfected plus aluminum-exposed groups significantly decreased (p < 0.05), and the level of Aß1-42 also decreased (p < 0.05). This result is consistent with the investigation in rat primary neurons. The results of two types of cells showed that aluminum may cause abnormal down-regulation of the expressions of miR-29a and miR-29b1, thus negatively regulating the increase of BACE1 expression and finally leading to the increase of Aß.


Assuntos
Doença de Alzheimer , MicroRNAs , Alumínio/toxicidade , Secretases da Proteína Precursora do Amiloide/genética , Peptídeos beta-Amiloides , Animais , Ácido Aspártico Endopeptidases/genética , Células HEK293 , Humanos , MicroRNAs/genética , Ratos
10.
Nat Neurosci ; 24(6): 786-798, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33958804

RESUMO

Selective neurodegeneration is a critical causal factor in Alzheimer's disease (AD); however, the mechanisms that lead some neurons to perish, whereas others remain resilient, are unknown. We sought potential drivers of this selective vulnerability using single-nucleus RNA sequencing and discovered that ApoE expression level is a substantial driver of neuronal variability. Strikingly, neuronal expression of ApoE-which has a robust genetic linkage to AD-correlated strongly, on a cell-by-cell basis, with immune response pathways in neurons in the brains of wild-type mice, human ApoE knock-in mice and humans with or without AD. Elimination or over-expression of neuronal ApoE revealed a causal relationship among ApoE expression, neuronal MHC-I expression, tau pathology and neurodegeneration. Functional reduction of MHC-I ameliorated tau pathology in ApoE4-expressing primary neurons and in mouse hippocampi expressing pathological tau. These findings suggest a mechanism linking neuronal ApoE expression to MHC-I expression and, subsequently, to tau pathology and selective neurodegeneration.


Assuntos
Doença de Alzheimer/metabolismo , Apolipoproteínas E/biossíntese , Antígenos de Histocompatibilidade Classe I/biossíntese , Neurônios/metabolismo , Regulação para Cima/fisiologia , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Apolipoproteínas E/genética , Células Cultivadas , Bases de Dados Genéticas/tendências , Feminino , Expressão Gênica , Técnicas de Introdução de Genes/métodos , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Degeneração Neural/genética , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Neurônios/patologia
11.
Chemosphere ; 278: 130484, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33838418

RESUMO

Aluminium (Al), not essential for biological activities, accumulates in the tissues. It exerts toxic effects on the nervous system, inducing in humans' irreversible cognitive impairment. In this study, a cluster sampling method was used to observe the cognitive function of long-term occupational Al-exposed workers in a large Al factory, and determine the expression of peripheral blood tumour necrosis factor receptor 1 (TNFR1), receptor-interacting protein 1 (RIP1), and RIP3. TNF-alpha, expressed in blood macrophages and microglia, with its receptors TNFR1, TR1 and TR3, enhances the necroptosis of neurons. Additionally, the relationship between the expression of TNFR1, RIP1, and RIP3 in the peripheral blood of long-term occupational Al-exposed workers and changes in their cognitive function was explored. The differences in the distributions of clock drawing test (CDT) scores among the three groups were statistically significant (P < 0.05). The results of correlation analysis showed that RIP1 and RIP3 protein contents were negatively correlated with mini-mental state examination (MMSE) and CDT scores (P < 0.05). Plasma Al content was positively correlated with other biological indicators (P < 0.05), and negatively correlated with MMSE and CDT scores (P < 0.05). Results showed that RIP3 protein had an incomplete mediation effect between plasma Al content and cognitive function. This suggests that Al may affect cognitive function by influencing the expression of TNFR1, RIP1, and RIP3 in the nervous system.


Assuntos
Alumínio , Disfunção Cognitiva , Apoptose , Cognição , Disfunção Cognitiva/induzido quimicamente , Humanos , Necroptose , Necrose , Receptores Tipo I de Fatores de Necrose Tumoral
12.
Nat Aging ; 1(10): 932-947, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-36172600

RESUMO

The evident genetic, pathological, and clinical heterogeneity of Alzheimer's disease (AD) poses challenges for traditional drug development. We conducted a computational drug repurposing screen for drugs to treat apolipoprotein (apo) E4-related AD. We first established apoE-genotype-dependent transcriptomic signatures of AD by analyzing publicly-available human brain database. We then queried these signatures against the Connectivity Map database containing transcriptomic perturbations of >1300 drugs to identify those that best reverse apoE-genotype-specific AD signatures. Bumetanide was identified as a top drug for apoE4 AD. Bumetanide treatment of apoE4 mice without or with Aß accumulation rescued electrophysiological, pathological, or cognitive deficits. Single-nucleus RNA-sequencing revealed transcriptomic reversal of AD signatures in specific cell types in these mice, a finding confirmed in apoE4-iPSC-derived neurons. In humans, bumetanide exposure was associated with a significantly lower AD prevalence in individuals over the age of 65 in two electronic health record databases, suggesting effectiveness of bumetanide in preventing AD.


Assuntos
Doença de Alzheimer , Camundongos , Humanos , Animais , Doença de Alzheimer/tratamento farmacológico , Apolipoproteína E4/genética , Bumetanida/farmacologia , Peptídeos beta-Amiloides/metabolismo , Reposicionamento de Medicamentos , Camundongos Transgênicos , Apolipoproteínas E/genética
13.
J Trace Elem Med Biol ; 64: 126700, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33316730

RESUMO

BACKGROUND: Aluminum is an environmental neurotoxin widely exposed to animals and humans. Studies have shown that Alzheimer's disease (AD) is characterized by abnormally phosphorylated tau and Aß deposition, aluminum exposure can lead to abnormal phosphorylated tau and Aß deposition. Numerous epidemiological data and studies have confirmed that ApoEε4 is a risk factor for AD. However, whether there is an interaction effect between aluminum and ApoEε4 has yet to be verified. METHODS: SH-SY5Y cells were exposed with AlCl3 and transfected with ApoEε4 respectively. The experimental groups included the blank control group, the low dose group (200 µM AlCl3), the medium dose group (400 µM AlCl3), the high dose group (800 µM AlCl3), empty plasmid group, ApoEε4 group and 400 µM AlCl3+ApoEε4 group. The cell viability was determined by CCK-8 kit after transfection for 48 h.The contents of total tau proteins, tau-181, tau-231, tau-262, tau-396 and Aß42, were determined by ELISA kit. The interaction between AlCl3 and ApoEε4 was analyzed by factorial design. RESULTS: With the increase of aluminum exposure, SH-SY5Y cell viability decreased, and the expression of the total tau, tau-181, tau-231, tau-262, tau-396 and Aß content increased. The viability of cells transfected with ApoEε4 is significantly lower than control group, and the expressions of total tau, tau-181, tau-231, tau-262, tau-396 and Aß in ApoEε4 transfected cells were significantly higher than control group. The viability of cells treated with AlCl3 plus ApoEε4 was lower than those treated with, either AlCl3, or ApoEε4. The expression of total tau, tau-181, tau-231, tau-262, tau-396 and Aß in the cells treated with AlCl3 plus ApoEε4 were significantly higher than those in other groups (p < 0.05). Moreover, analyzing data based on the factorial design, there was existed an interaction between AlCl3 and ApoEε4 (p < 0.05). CONCLUSION: Al and ApoEε4 gene can cause morphological changes of SH-SY5Y cells, reduce cell activity, and have obvious cytotoxic effects, and increase the phosphorylation levels of tau and the deposition of Aß increases. In the presence of both Al and ApoEε4 genes, the two factors interact with each other and show a synergistic effect.


Assuntos
Cloreto de Alumínio/farmacologia , Peptídeos beta-Amiloides/antagonistas & inibidores , Apolipoproteína E4/metabolismo , Proteínas tau/metabolismo , Peptídeos beta-Amiloides/metabolismo , Apolipoproteína E4/genética , Sobrevivência Celular/efeitos dos fármacos , Humanos , Fosforilação/efeitos dos fármacos , Células Tumorais Cultivadas
15.
Cell Rep ; 32(4): 107962, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32726626

RESUMO

Despite its clear impact on Alzheimer's disease (AD) risk, apolipoprotein (apo) E4's contributions to AD etiology remain poorly understood. Progress in answering this and other questions in AD research has been limited by an inability to model human-specific phenotypes in an in vivo environment. Here we transplant human induced pluripotent stem cell (hiPSC)-derived neurons carrying normal apoE3 or pathogenic apoE4 into human apoE3 or apoE4 knockin mouse hippocampi, enabling us to disentangle the effects of apoE4 produced in human neurons and in the brain environment. Using single-nucleus RNA sequencing (snRNA-seq), we identify key transcriptional changes specific to human neuron subtypes in response to endogenous or exogenous apoE4. We also find that Aß from transplanted human neurons forms plaque-like aggregates, with differences in localization and interaction with microglia depending on the transplant and host apoE genotype. These findings highlight the power of in vivo chimeric disease modeling for studying AD.


Assuntos
Doença de Alzheimer/fisiopatologia , Apolipoproteína E4/metabolismo , Neurônios/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Apolipoproteína E3/farmacologia , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Encéfalo/metabolismo , Quimera/genética , Quimera/metabolismo , Técnicas de Introdução de Genes , Hipocampo/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/metabolismo , Modelos Biológicos , Proteínas tau/metabolismo
16.
Neurotox Res ; 37(4): 835-846, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31721047

RESUMO

The brain is one of organs vulnerable to aluminum insult. Aluminum toxicity is involved in neurobehavioral deficit, neuronal cell dysfunction, and death. The aim of this study are as follows: (1) to evaluate the repairing efficiency of Necrostatin-1 (Nec-1), a cell death inhibitor, and Z-VAD-FMK, a pan-caspase inhibitor, on Al-induced neurobehavioral deficit and neuronal cell death, in order to evidence the cell death inducing ability of aluminum, and (2) to primarily explore the possibility of treating neuronal cell loss-related disease, such as Alzheimer's disease, with Nec-1 and Z-VAD in Al-induced dementia animal model. We found Nec-1 and Z-VAD-FMK alone or in combination could reduce aluminum-induced learning and memory impairment in mice. Pathohistological results indicated that Nec-1 and Z-VAD-FMK can decrease Al-induced neuronal death cell. In addition, some cell death-associated proteins in cell death signal pathway were inhibited by Nec-1 and Z-VAD-FMK in Al-exposed mice. In conclusions, Nec-1 and Z-VAD-FMK can repair the injury of learning and memory induced by aluminum in mice. Furthermore, Nec-1 was more obvious to repair the injury of learning and memory function compared with Z-VAD-FMK. Nec-1 and Z-VAD-FMK can repair the Al-induced morphological injury of cell and reduce the amounts of dead cell, and repairing effects were more significant at higher doses. The effect of Nec-1 was stronger than Z-VAD-FMK, though their mechanism was different. The combination of them had the strongest effect. Our study evidenced Al-induced neuronal necroptosis and apoptosis existing in animal model and suggested potential therapeutic effects of Nec-1 and Z-VAD-FMK on neuronal cell death in neurodegenerative diseases.


Assuntos
Alumínio/toxicidade , Clorometilcetonas de Aminoácidos/farmacologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/patologia , Imidazóis/farmacologia , Indóis/farmacologia , Fármacos Neuroprotetores/farmacologia , Animais , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Relação Dose-Resposta a Droga , Reação de Fuga/efeitos dos fármacos , Reação de Fuga/fisiologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Camundongos
17.
Chemosphere ; 244: 125445, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31835052

RESUMO

Aluminium is an environmental neurotoxin that comes extensively in contact with human being. The molecular mechanism of aluminium toxicity remains unclear. A number of studies have indicated that exposure to aluminium can impair learning and memory function. The purpose of this study was to investigate the mechanism of long-term potentiation(LTP) injury and the related signalling pathway activated by aluminium exposure. The results showed that aluminium treatment produced dose-dependent inhibition of LTP and reduced the activity of Histone H3K9 demethylation (H3K9me2) demethylase and the expression of the PHD (plant homeodomain) finger protein 8 (PHF8). Interestingly, there was no statistically significant difference in the expression of the PHF8 gene, suggesting that aluminium exposure only affects the translation process. Decrease in brain-derived neurotrophic factor (BDNF) expression may be related to the effect of aluminium. With correlation analysis between the hippocampal standardised field excitatory postsynaptic potential (fEPSP) amplitude and the expression of various proteins in the aluminium-exposed rat, the hippocampal standardised fEPSP amplitude was positively correlated with the expression of hippocampal PHF8 and BDNF proteins, and negatively correlated with the expression of hippocampal H3K9me2 protein. The correlation between H3K9me2 and BDNF was also considered negative. The results suggest that changes in synaptic plasticity might be related to changes in these proteins, which were induced by aluminium exposure. In conclusion, chronic aluminium exposure may inhibit PHF8 and prevent it from functioning as a demethylase. This may block H3K9me2 demethylation, decrease BDNF protein expression, and lead to LTP impairment.


Assuntos
Alumínio/toxicidade , Substâncias Perigosas/toxicidade , Plasticidade Neuronal/efeitos dos fármacos , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Hipocampo/metabolismo , Histona Desmetilases , Humanos , Aprendizagem/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Memória/efeitos dos fármacos , Ratos , Transdução de Sinais/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Fatores de Transcrição/metabolismo
18.
J Chromatogr B Analyt Technol Biomed Life Sci ; 978-979: 157-62, 2015 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-25550191

RESUMO

In this study, a liquid chromatography-tandem mass spectrometry method was developed and validated to simultaneously determine naproxcinod and naproxen concentrations in rat plasma for the first time. Plasma samples were prepared by simple one-step extraction with methanol for protein precipitation using only 50 µL plasma. Separation was performed on a Synergi Fusion-RP C18 column with a run time of 4 min. Naproxcinod, naproxen and internal standard concentrations were detected in the positive ion mode using multiple reaction monitoring (MRM) of the transitions at m/z 348.2→302.2, 231.1→185.1 and 271.2→203.1, respectively. The calibration curves were linear, with all correlation coefficients being ≥0.9952, in the range of 1.00-400 ng/mL for naproxcinod and 20.0-8000 ng/mL for naproxen. Their accuracy was in the range of -8.1% to 8.7%, and the intra- and inter-day variations were ≤4.53%. The mean extraction recovery of all analytes was more than 93.1% efficient. Stability testing showed that naproxcinod and naproxen remained stable during the whole analytical procedure. After validation, the method was successfully applied to a pharmacokinetic study of naproxcinod and naproxen in rats. The AUC0-∞ of naproxen was 74.6 times larger than that of naproxcinod, which indicated that naproxcinod was rapidly metabolized into naproxen in rats.


Assuntos
Cromatografia Líquida/métodos , Naproxeno/análogos & derivados , Naproxeno/sangue , Espectrometria de Massas em Tandem/métodos , Animais , Estabilidade de Medicamentos , Modelos Lineares , Masculino , Naproxeno/química , Naproxeno/farmacocinética , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
19.
J Colloid Interface Sci ; 326(2): 439-44, 2008 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-18675988

RESUMO

This paper reports on a new method for the preparation of mesoporous silica membranes on alumina hollow fibers. A surfactant-silica sol is filled in the lumen of an alpha-alumina hollow fiber. The filtration technique combined with an evaporation-induced self-assembly (EISA) process results in the formation of a continuous ordered mesoporous silica layer on the outer side of alpha-alumina hollow fibers. X-ray diffraction (XRD), transmission electron microscopy (TEM), and nitrogen isothermal adsorption measurements reveal that these membranes possess hexagonal (P6mm) mesostructures with pore diameters of 4.48 nm and BET surfaces of 492.3 m(2) g(-1). Scanning electron microscopy (SEM) studies show that the layers are defect free and energy-dispersive spectroscopy (EDS) mapping images further confirm the formation of continuous mesoporous silica layer on the outer side of alpha-alumina hollow fibers. Nitrogen and hydrogen permeance tests show that the membranes are defect free.

20.
J Colloid Interface Sci ; 318(2): 309-14, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18036539

RESUMO

Mesoporous silica materials with a centered rectangular symmetry (cmm) have been synthesized through a facile direct-templating method using tetraethylorthosilicate (TEOS) and amphiphilic block co-polymers Pluronic P123 under acidic conditions. The amino groups have been grafted to as-synthesized mesoporous silica by [1-(2-amino-ethyl)-3-aminopropyl]trimethoxysilane (AAPTS). Thus obtained amino-functionalized mesoporous silica (denoted as NN-silica) was used for sequestration of Cr(VI) from aqueous solution. After sequestration of Cr(VI), the sample was denoted as Cr(VI)-silica. The parent mesoporous silica, NN-silica and Cr(VI)-silica were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR) and N(2) adsorption-desorption isotherms. XRD and TEM results confirm that the structure of these samples is centered rectangular symmetry (cmm). N(2) adsorption-desorption isotherms show that there is a remarkable decrease in surface area and pore volume for NN-silica (S(BET)=54.5 m(2)g(-1), V(P)=0.09 cm(3)g(-1)) and Cr(VI)-silica (S(BET)=53.2 m(2)g(-1), V(P)=0.07 cm(3)g(-1)) compared to the parent mesoporous silica (S(BET)=444.0 m(2)g(-1), V(P)=0.71 cm(3)g(-1)). The BJH desorption average diameter of NN-silica, Cr(VI)-silica and the parent mesoporous silica is 4.40 nm, 4.07 nm and 5.11 nm, respectively. The results reveal the channels of as-synthesized mesoporous silica are essentially grafted with abundant amino groups and loaded with Cr(VI). The adsorption experiment results show that the functionalized mesoporous silica materials possess an increased Cr(VI) adsorption capacity and the maximum Cr(VI) loadings at 25, 35 and 45 degrees C can reach 2.28, 2.86 and 3.32 mmol/g, respectively.


Assuntos
Cromo/química , Silanos/química , Dióxido de Silício/química , Dióxido de Silício/síntese química , Adsorção , Microscopia Eletrônica de Varredura/métodos , Microscopia Eletrônica de Transmissão/métodos , Nitrogênio/química , Tamanho da Partícula , Porosidade , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Propriedades de Superfície , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...