Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Elife ; 72018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-30014846

RESUMO

Nitric oxide (NO) is released into the air by NO-producing organisms; however, it is unclear if animals utilize NO as a sensory cue. We show that C. elegans avoids Pseudomonas aeruginosa (PA14) in part by detecting PA14-produced NO. PA14 mutants deficient for NO production fail to elicit avoidance and NO donors repel worms. PA14 and NO avoidance are mediated by a chemosensory neuron (ASJ) and these responses require receptor guanylate cyclases and cyclic nucleotide gated ion channels. ASJ exhibits calcium increases at both the onset and removal of NO. These NO-evoked ON and OFF calcium transients are affected by a redox sensing protein, TRX-1/thioredoxin. TRX-1's trans-nitrosylation activity inhibits the ON transient whereas TRX-1's de-nitrosylation activity promotes the OFF transient. Thus, C. elegans exploits bacterially produced NO as a cue to mediate avoidance and TRX-1 endows ASJ with a bi-phasic response to NO exposure.


Assuntos
Caenorhabditis elegans/microbiologia , Caenorhabditis elegans/fisiologia , Células Quimiorreceptoras/fisiologia , Neurotransmissores/metabolismo , Óxido Nítrico/metabolismo , Pseudomonas aeruginosa/metabolismo , Tiorredoxinas/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Caenorhabditis elegans/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Células Quimiorreceptoras/efeitos dos fármacos , Processamento de Proteína Pós-Traducional
2.
Genetics ; 210(1): 275-285, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30049781

RESUMO

Neurons are highly dependent on mitochondrial function, and mitochondrial damage has been implicated in many neurological and neurodegenerative diseases. Here we show that axonal mitochondria are necessary for neuropeptide secretion in Caenorhabditis elegans and that oxidative phosphorylation, but not mitochondrial calcium uptake, is required for secretion. Oxidative phosphorylation produces cellular ATP, reactive oxygen species, and consumes oxygen. Disrupting any of these functions could inhibit neuropeptide secretion. We show that blocking mitochondria transport into axons or decreasing mitochondrial function inhibits neuropeptide secretion through activation of the hypoxia inducible factor HIF-1 Our results suggest that axonal mitochondria modulate neuropeptide secretion by regulating transcriptional responses induced by metabolic stress.


Assuntos
Neuropeptídeos/metabolismo , Animais , Axônios/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Hipóxia/metabolismo , Mitocôndrias/metabolismo , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Fosforilação Oxidativa , Estresse Oxidativo/fisiologia , Oxigênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores de Neuropeptídeos/metabolismo , Fatores de Transcrição/metabolismo
3.
eNeuro ; 4(2)2017.
Artigo em Inglês | MEDLINE | ID: mdl-28451641

RESUMO

Environmental osmolarity presents a common type of sensory stimulus to animals. While behavioral responses to osmotic changes are important for maintaining a stable intracellular osmolarity, the underlying mechanisms are not fully understood. In the natural habitat of Caenorhabditis elegans, changes in environmental osmolarity are commonplace. It is known that the nematode acutely avoids shocks of extremely high osmolarity. Here, we show that C. elegans also generates gradually increased aversion of mild upshifts in environmental osmolarity. Different from an acute avoidance of osmotic shocks that depends on the function of a transient receptor potential vanilloid channel, the slow aversion to osmotic upshifts requires the cGMP-gated sensory channel subunit TAX-2. TAX-2 acts in several sensory neurons that are exposed to body fluid to generate the aversive response through a motor network that underlies navigation. Osmotic upshifts activate the body cavity sensory neuron URX, which is known to induce aversion upon activation. Together, our results characterize the molecular and cellular mechanisms underlying a novel sensorimotor response to osmotic stimuli and reveal that C. elegans engages different behaviors and the underlying mechanisms to regulate responses to extracellular osmolarity.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Canais Iônicos/metabolismo , Osmorregulação , Células Receptoras Sensoriais/metabolismo , Animais , Caenorhabditis elegans , Locomoção , Pressão Osmótica
4.
PLoS Genet ; 8(1): e1002464, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22275875

RESUMO

Secretion of neurotransmitters and neuropeptides is mediated by exocytosis of distinct secretory organelles, synaptic vesicles (SVs) and dense core vesicles (DCVs) respectively. Relatively little is known about factors that differentially regulate SV and DCV secretion. Here we identify a novel protein RIC-7 that is required for neuropeptide secretion in Caenorhabditis elegans. The RIC-7 protein is expressed in all neurons and is localized to presynaptic terminals. Imaging, electrophysiology, and behavioral analysis of ric-7 mutants indicates that acetylcholine release occurs normally, while neuropeptide release is significantly decreased. These results suggest that RIC-7 promotes DCV-mediated secretion.


Assuntos
Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Neurônios/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Terminações Pré-Sinápticas/metabolismo , Acetilcolina/metabolismo , Aldicarb , Animais , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Diacilglicerol Quinase/genética , Diacilglicerol Quinase/metabolismo , Hipersensibilidade a Drogas/genética , Exocitose , Músculo Esquelético/efeitos dos fármacos , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Vesículas Secretórias/genética , Vesículas Secretórias/metabolismo , Vesículas Sinápticas/genética , Vesículas Sinápticas/metabolismo , Ácido gama-Aminobutírico/farmacologia
5.
Nat Cell Biol ; 13(11): 1361-7, 2011 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-21983565

RESUMO

A hallmark of polarized cells is the segregation of the PAR polarity regulators into asymmetric domains at the cell cortex. Antagonistic interactions involving two conserved kinases, atypical protein kinase C (aPKC) and PAR-1, have been implicated in polarity maintenance, but the mechanisms that initiate the formation of asymmetric PAR domains are not understood. Here, we describe one pathway used by the sperm-donated centrosome to polarize the PAR proteins in Caenorhabditis elegans zygotes. Before polarization, cortical aPKC excludes PAR-1 kinase and its binding partner PAR-2 by phosphorylation. During symmetry breaking, microtubules nucleated by the centrosome locally protect PAR-2 from phosphorylation by aPKC, allowing PAR-2 and PAR-1 to access the cortex nearest the centrosome. Cortical PAR-1 phosphorylates PAR-3, causing the PAR-3-aPKC complex to leave the cortex. Our findings illustrate how microtubules, independently of actin dynamics, stimulate the self-organization of PAR proteins by providing local protection against a global barrier imposed by aPKC.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Polaridade Celular , Microtúbulos/enzimologia , Proteína Quinase C/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Zigoto/enzimologia , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Microtúbulos/genética , Complexos Multienzimáticos , Domínios PDZ , Fosforilação , Proteína Quinase C/genética , Proteínas Serina-Treonina Quinases/genética , Transporte Proteico , Interferência de RNA , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Tempo
6.
Development ; 137(10): 1669-77, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20392744

RESUMO

Polarization of the C. elegans zygote is initiated by ECT-2-dependent cortical flows, which mobilize the anterior PAR proteins (PAR-3, PAR-6 and PKC-3) away from the future posterior end of the embryo marked by the sperm centrosome. Here, we demonstrate the existence of a second, parallel and redundant pathway that can polarize the zygote in the absence of ECT-2-dependent cortical flows. This second pathway depends on the polarity protein PAR-2. We show that PAR-2 localizes to the cortex nearest the sperm centrosome even in the absence of cortical flows. Once on the cortex, PAR-2 antagonizes PAR-3-dependent recruitment of myosin, creating myosin flows that transport the anterior PAR complex away from PAR-2 in a positive-feedback loop. We propose that polarity in the C. elegans zygote is initiated by redundant ECT-2- and PAR-2-dependent mechanisms that lower PAR-3 levels locally, triggering a positive-feedback loop that polarizes the entire cortex.


Assuntos
Padronização Corporal/genética , Proteínas de Caenorhabditis elegans/fisiologia , Polaridade Celular/genética , Zigoto/crescimento & desenvolvimento , Alelos , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Embrião não Mamífero , Genes de Helmintos/fisiologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Zigoto/metabolismo , Zigoto/fisiologia
7.
Dev Cell ; 10(2): 199-208, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16459299

RESUMO

Asymmetric localization of PAR proteins is a hallmark of polarized cells, but the mechanisms that create PAR asymmetry are not well understood. In the C. elegans zygote, PAR asymmetry is initiated by a transient actomyosin contraction, which sweeps the PAR-3/PAR-6/PKC-3 complex toward the anterior pole of the egg. The RING finger protein PAR-2 accumulates in a complementary pattern in the posterior cortex. Here we present evidence that PAR-2 participates in a feedback loop to stabilize polarity. PAR-2 is a target of the PKC-3 kinase and is excluded from the anterior cortex by PKC-3-dependent phosphorylation. The RING domain of PAR-2 is required to overcome inhibition by PKC-3 and stabilize PAR-2 on the posterior cortex. Cortical PAR-2 in turn prevents PAR-3/PAR-6/PKC-3 from returning to the posterior, in a PAR-1- and PAR-5-dependent manner. Our findings suggest that reciprocal inhibitory interactions among PAR proteins stabilize polarity by reinforcing an initial asymmetry in PKC-3.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Polaridade Celular/fisiologia , Sequência de Aminoácidos , Animais , Sítios de Ligação , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Regulação para Baixo , Retroalimentação , Feminino , Genes de Helmintos , Masculino , Dados de Sequência Molecular , Fosforilação , Proteína Quinase C/metabolismo , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Zigoto/citologia , Zigoto/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA