Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Virol J ; 16(1): 97, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31382996

RESUMO

BACKGROUND: Transmissible gastroenteritis virus (TGEV), a member of the family Coronaviridae, causes lethal watery diarrhea in piglets. Previous studies have revealed that the coronaviruses develop various strategies to evade the host innate immunity through the inhibition of nuclear factor kappa B (NF-κB) signaling pathway. However, the ability of TGEV to inhibit the host innate immune response by modulating the NF-κB signaling pathway is not clear. METHODS: In this study, a dual luciferase reporter assay was used to confirm the inhibition of NF-κB by TGEV infection and to identify the major viral proteins involved in the inhibition of NF-κB signaling. Real-time quantitative PCR was used to quantify the mRNA expression of inflammatory factors. The deubiquitination of Nsp3 domains and its effect on IκBα and p65 were analyzed by western blotting. The ubiquitination level of IκBα was analyzed by immunoprecipitation. RESULTS: In ST and IPEC-J2 cells, TGEV exhibited a dose-dependent inhibition of NF-κB activity. Individual TGEV protein screening revealed the high potential of non-structural protein 3 (Nsp3) to inhibit NF-κB signaling, and leading to the downregulation of the NF-κB-induced cytokine production. We demonstrated that the inhibitory effect of Nsp3 was mainly mediated through the suppression of IκBα degradation as well as the inhibition of p65 phosphorylation and nuclear translocation. Furthermore, the amino acid residues at positions 590-1,215 in Nsp3 were demonstrated to inhibit the degradation of IκBα by inhibiting the IκBα ubiquitination. CONCLUSION: TGEV infection can inhibit the activation of the NF-κB signaling pathway, which is mainly mediated by Nsp3 through the canonical pathway. The amino acid residues at positions 590-1,215 in Nsp3 compose the critical domain that mediates NF-κB inhibition. We speculate that this inhibitory effect is likely to be related to the structure of PLP2 with deubiquitinating enzyme activity of the amino acid residues at positions 590-1,215 in Nsp3. Our study provides a better understanding of the TGEV-mediated innate immune modulation and lays the basis for studies on the pathogenesis of coronavirus.


Assuntos
Gastroenterite Suína Transmissível/imunologia , Evasão da Resposta Imune , Imunidade Inata , NF-kappa B/antagonistas & inibidores , Transdução de Sinais , Vírus da Gastroenterite Transmissível/imunologia , Proteínas não Estruturais Virais/genética , Animais , Linhagem Celular , Regulação para Baixo , Interações entre Hospedeiro e Microrganismos , NF-kappa B/genética , Suínos , Vírus da Gastroenterite Transmissível/fisiologia , Proteínas não Estruturais Virais/imunologia , Replicação Viral
2.
Virulence ; 9(1): 1685-1698, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30322331

RESUMO

Transmissible gastroenteritis virus (TGEV) infection causes acute enteritis in swine of all ages, and especially in suckling piglets. Small intestinal inflammation is considered a central event in the pathogenesis of TGEV infections, and nuclear factor-kappa B (NF-κB) is a key transcription factor in the inflammatory response. However, it is unclear whether NF-κB is crucial for inducing inflammation during a TGEV infection. Our results show that NF-κB was activated in swine testicular (ST) cells and intestinal epithelial cell lines J2 (IPEC-J2) cells infected with TGEV, which is consistent with the up-regulation of pro-inflammatory cytokines. Treatment of TGEV-infected ST cells and IPEC-J2 cells with the NF-κB-specific inhibitor caused the down-regulation of pro-inflammatory cytokine expression, but did not significantly affect TGEV replication. Individual TGEV protein screening results demonstrated that Nsp2 exhibited a high potential for activating NF-κB and enhancing the expression of pro-inflammatory cytokines. Functional domain analyzes indicated that the first 120 amino acid residues of Nsp2 were essential for NF-κB activation. Taken together, these data suggested that NF-κB activation was a major contributor to TGEV infection-induced inflammation, and that Nsp2 was the key viral protein involved in the regulation of inflammation, with amino acids 1-120 playing a critical role in activating NF-κB. Abbreviations: TCID50: 50% tissue culture infectious dose; DMEM: Dulbecco's Modified Eagle Medium; eNOS: Endothelial nitric oxide synthase; FBS: fetal bovine serum; IFA: Indirect immunofluorescence; IκB: inhibitor of nuclear factor kappa-B; IL: interleukin; IPEC-J2: intestinal epithelial cell lines J2; IKK: IκB kinase; Luc: luciferase reporter gene; mAbs: monoclonal antibodies; MOI: multiple of infection; Nsp: nonstructural protein; NF-κB: nuclear factor-kappa ; ORFs: open reading frames; PBS: phosphate-buffered saline; p65 p-p65: phosphorylated; RT-PCR: reverse transcription PC; SeV: Sendai virus; ST: swine testicular; TGEV: Transmissible gastroenteritis virus; TNF-α: tumor necrosis factor α; UV-TGEV: Ultraviolet light-inactivated TGEV; ZnF: zinc finger.


Assuntos
Gastroenterite Suína Transmissível/imunologia , Inflamação , NF-kappa B/imunologia , Vírus da Gastroenterite Transmissível/química , Proteínas não Estruturais Virais/imunologia , Animais , Linhagem Celular , Citocinas/imunologia , Células Epiteliais/virologia , Regulação Viral da Expressão Gênica , Intestinos/citologia , Intestinos/virologia , NF-kappa B/antagonistas & inibidores , Fosforilação , Suínos , Vírus da Gastroenterite Transmissível/imunologia , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...