Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(11): 19541-19551, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38859087

RESUMO

What we believe is a novel dual-channel whispering gallery mode (WGM) sensor for concurrently measuring bidirectional magnetic field and temperature is proposed and demonstrated. Two sensing microcavities [magnetic fluid (MF)-infiltrated capillary and polydimethylsiloxane (PDMS)-coated microbottle, respectively, referred as Channel 1 (CH1) and Channel 2 (CH2)] are integrated into a silica capillary to facilitate the dual-channel design. Resonant wavelengths corresponding to CH1 and CH2 mainly depend on the change in the magneto-induced refractive index and the change in the thermo-induced parameter (volume and refractive index) of the employed functional materials, respectively. The MF-infiltrated capillary enables bidirectional magnetic field sensing with maximum sensitivities of 46 pm/mT and -3 pm/mT, respectively. The PDMS-coated structure can realize the temperature measurement with a maximum sensitivity of 79.7 pm/°C. The current work possesses the advantage of bidirectionally magnetic tunability besides the temperature response, which is expected to be used in field such as vector magnetic fields and temperature dual-parameter sensing.

2.
Opt Express ; 32(1): 275-286, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38175055

RESUMO

A kind of temperature and magnetic field sensor using Fabry-Perot interferometers (FPIs) and Vernier effect to enhance sensitivity is proposed. The sensor structure involves filling the FP air cavities with polydimethylsiloxane (PDMS) and magnetic fluid (MF) to create the PDMS and MF cavities for temperature and magnetic field detection, respectively. The two cavities are reflective structures, which are interconnected in series through a fiber-optic circulator. Experimental data demonstrates that the Vernier effect effectively enhances the sensor sensitivity. The average temperature sensitivity of the sensor is 26765 pm/°C within the range of 35∼39.5°C. The magnetic field intensity sensitivity is obtained to be -2245 pm/mT within the range of 3∼11 mT. The sensitivities of the temperature and magnetic field using the Vernier effect are about five times larger than those of the corresponding single FP cavity counterparts.

3.
Mol Neurobiol ; 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37989981

RESUMO

Epilepsy is a progression of development and advancement over time. However, the molecular features of epilepsy were poorly studied from a dynamic developmental perspective. We intend to investigate the key mechanisms in the process of epilepsy by exploring the roles of stage-specifically expressed genes. By using time-course transcriptomic data of epileptic samples, we first analyzed the molecular features of epilepsy in different stages and divided it into progression and remission stages based on their transcriptomic features. 34 stage-specifically expressed genes were then identified by the Tau index and verified in other epileptic datasets. These genes were then enriched for immune-related biological functions. Furthermore, we found that the level of immune infiltration and mechanisms at different stages were different, which may result from different types of immune cells playing leading roles in distinct stages. Our findings indicated an essential role of immune regulation as the potential mechanism of epilepsy development.

4.
Opt Lett ; 48(17): 4504-4507, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37656539

RESUMO

A novel, to the best of our knowledge, vector magnetic field sensor with temperature compensation is proposed and investigated. The proposed sensor is realized by side polishing a multi-mode optical fiber and adopting the surface plasmon resonance (SPR) effect. The side-polished surface is coated with a magnetic fluid (MF) and polydimethylsiloxane (PDMS) successively along the fiber axis. The as-fabricated sensor can be used not only for magnetic field strength and direction sensing, but also for temperature detection. The achieved magnetic field intensity sensitivities are 1720 pm/mT (90° direction) and -710 pm/mT (0° direction), and the temperature sensitivity is -2070 pm/°C. On top of its temperature compensation ability, the easy fabrication and very high sensitivity of the proposed sensor are attractive features for vector magnetic field sensing applications.

5.
Mol Brain ; 16(1): 30, 2023 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-36934242

RESUMO

Neuronal voltage changes which are dependent on chloride transporters and channels are involved in forming neural functions during early development and maintaining their stability until adulthood. The intracellular chloride concentration maintains a steady state, which is delicately regulated by various genes coding for chloride transporters and channels (GClTC) on the plasmalemma; however, the synergistic effect of these genes in central nervous system disorders remains unclear. In this study, we first defined 10 gene clusters with similar temporal expression patterns, and identified 41 GClTC related to brain developmental process. Then, we found 4 clusters containing 22 GClTC were enriched for the neuronal functions. The GClTC from different clusters presented distinct cell type preferences and anatomical heterogeneity. We also observed strong correlations between clustered genes and diseases, most of which were nervous system disorders. Finally, we found that one of the most well-known GClTC, SLC12A2, had a more profound effect on glial cell-related diseases than on neuron-related diseases, which was in accordance with our observation that SLC12A2 was mainly expressed in oligodendrocytes during brain development. Our findings provide a more comprehensive understanding of the temporal and spatial expression characteristics of GClTC, which can help us understand the complex roles of GClTC in the development of the healthy human brain and the etiology of brain disorders.


Assuntos
Encefalopatias , Cloretos , Humanos , Encéfalo/metabolismo , Canais de Cloreto/metabolismo , Cloretos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Neuroglia/metabolismo , Membro 2 da Família 12 de Carreador de Soluto/metabolismo
6.
Opt Express ; 31(3): 4826-4838, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36785440

RESUMO

All-fiber-optic magnetic field sensor integrated with magnetic fluid has been investigated for decades, accompanied by the commitment to vectorization, miniaturization, integration and solving the temperature cross-sensitivity caused by thermo-optic effect of magnetic fluid. A kind of dual-channel-in-one temperature-compensated all-fiber-optic vector magnetic field sensor was proposed and investigated theoretically in this work. Three optical surfaces, including two sensing surfaces (plated with gold film of 40 nm thickness and then coated with magnetic fluid and polydimethylsiloxane, respectively, referred as CH1 and CH2) and one reflective surface, were integrated on a single-mode fiber tip to facilitate the dual-channel-in-one design. The Kretschmann configurations were formed by the waveguide fiber, gold film and functional materials at the sensing surfaces (CH1 and CH2). Surface plasmon resonance was excited in different wavelength bands corresponding to CH1 and CH2. Attenuation wavelengths corresponding to CH1 and CH2 depend on the magneto-induced and temperature-induced refractive index change of functional materials, respectively, which makes the temperature-compensated magnetic field sensing possible. The non-centrosymmetric evanescent field generated by micro-fiber-tip-prism enables the vector magnetic field sensing. Especially, the length of the sensing area is only 115.5 µm, which achieves ultra-integration and miniaturization. The current work provides a novel scheme for designing all-fiber-optic vector magnetic field sensing based on magnetic fluid and demonstrates the realization of lab-on-a-fiber and then promotes the industrial application of all-fiber-optic vector magnetic field sensing devices.

7.
Opt Express ; 30(14): 25208-25218, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-36237056

RESUMO

Fiber-optic magnetic field sensors based on magnetic fluid (MF) is encountering with thermal effects and demand for vectorization for several years. A common solution is to use axially processed fiber cascaded with fiber Bragg grating (FBG). However, the length of such sensors is usually in centimeter-level, which restricts the sensing applications in narrow space and gradient field cases. In this work, we present an ultracompact reflection-type dual-channel sensor for vector magnetic field (Channel 1, referred as CH1) and temperature (Channel 2, referred as CH2) monitoring, which is composed of a pair of gold-plated wedge-shaped multimode fiber (MMF) tip and gold-plated multimode-no-core fiber (MNF) tip. The surface plasmon resonance (SPR) effect was adopted. The two sensor probes are coated with magnetic-field-sensitive MF and temperature-sensitive polydimethylsiloxane (PDMS), respectively. The issue of vector magnetic field and temperature cross-sensitivity is tactfully resolved. Importantly, the proposed sensing probes are ultracompact and the spatial resolution is extremely small (615 µm for CH1 based on wedge-shaped fiber tip and 2 mm for CH2 based on MNF), which is very helpful for narrow space and gradient magnetic field detection. The obtained magnetic field intensity sensitivities are 1.10 nm/mT (90° direction) and -0.26 nm/mT (0° direction), and temperature sensitivity is -3.12 nm/°C.

8.
Materials (Basel) ; 15(20)2022 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-36295276

RESUMO

A kind of bent multimode fiber (MMF) vector magnetic sensor based on surface plasmon resonance (SPR) was proposed. By plating gold film on the curved part of the bent multimode fiber, the surface plasmon mode (SPM) was excited via a whispering gallery mode (WGM). Fabricating the structure only required bending the fiber and plating it with gold, which perfectly ensured the integrity of the fiber and made it more robust compared with other structures. The sensor used magnetic fluid (MF) as the magnetically sensitive material. Through monitoring the shift of the surface plasmon resonance dip, the as-fabricated sensor not only had a high magnetic field intensity sensitivity of 9749 pm/mT but could also measure the direction of a magnetic field with a high sensitivity of 546.5 pm/°. The additional advantages of the proposed sensor lay in its easy fabrication and good integrity, which make it attractive in the field of vector-magnetic-field sensing.

9.
Front Genet ; 13: 928393, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783275

RESUMO

Autism spectrum disorder (ASD) is a heritable neurodevelopmental disorder with the underlying etiology yet incompletely understood and no cure treatment. Patients of fragile X syndrome (FXS) also manifest symptoms, e.g. deficits in social behaviors, that are core traits with ASD. Several studies demonstrated that a mutual defect in retinoic acid (RA) signaling was observed in FXS and ASD. However, it is still unknown whether RA replenishment could pose a positive effect on autistic-like behaviors in FXS. Herein, we found that RA signaling was indeed down-regulated when the expression of FMR1 was impaired in SH-SY5Y cells. Furthermore, RA supplementation rescued the atypical social novelty behavior, but failed to alleviate the defects in sociability behavior or hyperactivity, in Fmr1 knock-out (KO) mouse model. The repetitive behavior and motor coordination appeared to be normal. The RNA sequencing results of the prefrontal cortex in Fmr1 KO mice indicated that deregulated expression of Foxp2, Tnfsf10, Lepr and other neuronal genes was restored to normal after RA treatment. Gene ontology terms of metabolic processes, extracellular matrix organization and behavioral pathways were enriched. Our findings provided a potential therapeutic intervention for social novelty defects in FXS.

10.
Nanomaterials (Basel) ; 12(5)2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35269350

RESUMO

A kind of novel and compact magnetic field sensor has been proposed and investigated experimentally. The proposed sensor consists of a tapered single mode fiber coupled with a nanostructured magnetic fluid-infiltrated photonic crystal fiber, which is easy to be fabricated. The response of magnetic fluid to magnetic field is used to measure the intensity of magnetic field via whispering gallery mode. The magnetic field-dependent shift in resonance wavelength is observed. The maximum magnetic field intensity sensitivity is 53 pm/mT. The sensor sensitivity is inversely proportional to the thickness of the photonic crystal fiber cladding.

11.
Opt Express ; 29(4): 5236-5246, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33726063

RESUMO

A novel, compact, and easy fabrication vector magnetic field sensor has been proposed and investigated. The proposed sensor consists of a U-bent single-mode fiber fixed in a magnetic-fluid-filled vessel. Neither mechanical modification nor additional fiber grating is needed during the sensor fabrication. The results show that the response of magnetic fluid to magnetic field can be used to measure the direction and intensity of magnetic field via whispering gallery modes supported by the U-bent fiber structure with suitable bending radius. The sensitivity of direction is 0.251 nm/°, and the maximum magnetic field intensity sensitivity is 0.517 nm/mT. Besides, the results of this work prove the feasibility for realizing vector magnetic sensors based on other bending structures (such as bending multimode interference, bending SPR structure) in the future.

12.
Natl Sci Rev ; 7(3): 671-685, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34692086

RESUMO

Central precocious puberty (CPP) refers to a human syndrome of early puberty initiation with characteristic increase in hypothalamic production and release of gonadotropin-releasing hormone (GnRH). Previously, loss-of-function mutations in human MKRN3, encoding a putative E3 ubiquitin ligase, were found to contribute to about 30% of cases of familial CPP. MKRN3 was thereby suggested to serve as a 'brake' of mammalian puberty onset, but the underlying mechanisms remain as yet unknown. Here, we report that genetic ablation of Mkrn3 did accelerate mouse puberty onset with increased production of hypothalamic GnRH1. MKRN3 interacts with and ubiquitinates MBD3, which epigenetically silences GNRH1 through disrupting the MBD3 binding to the GNRH1 promoter and recruitment of DNA demethylase TET2. Our findings have thus delineated a molecular mechanism through which the MKRN3-MBD3 axis controls the epigenetic switch in the onset of mammalian puberty.

13.
Opt Express ; 27(24): 35182-35188, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31878691

RESUMO

A kind of compact all-fiber-optic vector magnetic sensor is proposed and demonstrated. The sensor consists of a side-polished-fiber (SPF)-integrated with singlemode-no core-singlemode (SNS) fiber structure. A section of side-polished fiber breaks the axially symmetry of the composite structure. The as-fabricated sensor supports vector sensing and has a magnetic field strength sensitivity of up to -2370 pm/mT over 2-6 mT range. The physical mechanism is that the modal interference is strongly influenced by the refractive index (RI) near the side-polished surface. The advantages of the proposed sensor lie in low cost, simple structure and easy manufacture, which make it attractive in the field of magnetic field vector sensing.

15.
Cell Res ; 28(1): 48-68, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29076503

RESUMO

The autism spectrum disorders (ASDs) are a collection of human neurological disorders with heterogeneous etiologies. Hyperactivity of E3 ubiquitin (Ub) ligase UBE3A, stemming from 15q11-q13 copy number variations, accounts for 1%-3% of ASD cases worldwide, but the underlying mechanisms remain incompletely characterized. Here we report that the functionality of ALDH1A2, the rate-limiting enzyme of retinoic acid (RA) synthesis, is negatively regulated by UBE3A in a ubiquitylation-dependent manner. Excessive UBE3A dosage was found to impair RA-mediated neuronal homeostatic synaptic plasticity. ASD-like symptoms were recapitulated in mice by overexpressing UBE3A in the prefrontal cortex or by administration of an ALDH1A antagonist, whereas RA supplements significantly alleviated excessive UBE3A dosage-induced ASD-like phenotypes. By identifying reduced RA signaling as an underlying mechanism in ASD phenotypes linked to UBE3A hyperactivities, our findings introduce a new vista of ASD etiology and facilitate a mode of therapeutic development against this increasingly prevalent disease.


Assuntos
Transtorno do Espectro Autista/metabolismo , Neurônios/metabolismo , Retinal Desidrogenase/metabolismo , Tretinoína/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Família Aldeído Desidrogenase 1 , Animais , Transtorno do Espectro Autista/tratamento farmacológico , Pré-Escolar , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Terapia de Alvo Molecular , Plasticidade Neuronal , Transdução de Sinais , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...