Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.965
Filtrar
1.
ACS Nano ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012051

RESUMO

Water electrolysis assisted by hydrazine has emerged as a prospective energy conversion method for achieving efficient hydrogen generation. Due to the potential coincidence region (PCR) between the hydrogen evolution reaction (HER) and the electro-oxidation of hydrazine, the hydrazine oxidation reaction (HzOR) offers distinct advantages in terms of strategy amalgamation, device architecture, and the broadening of application horizons. Herein, we report a bifunctional electrocatalyst of interfacial heterogeneous Fe2P/Co2P microspheres supported on Ni foam (FeCoP/NF). Benefiting from the strong interfacial coupling effect between Fe2P and Co2P and the three-dimensional microsphere structure, FeCoP/NF exhibits outstanding bifunctional electrocatalytic performance, achieving 10 mA cm-2 with low overpotentials of 10 and 203 mV for HER and HzOR, respectively. Utilizing FeCoP/NF for both electrodes in HzOR-assisted water electrolysis results in significantly reduced potentials of 820 mV for 1 A cm-2 in contrast to the electro-oxidation of alternative chemical substrates. The presence of a potential coincidence region makes the application of self-activated seawater electrolysis realistic. The gas production behavior at different current densities in this interesting hydrogen production system is discussed, and some rules that are distinguished from conventional water electrolysis are summarized. Furthermore, a new self-powered hydrogen production system with a direct hydrazine fuel cell, rechargeable Zn-hydrazine battery, and hydrazine-assisted seawater electrolysis is proposed, emphasizing the distinct benefits of HzOR and its potential role in electrochemical energy conversion technologies powered by renewable sources.

2.
BMC Cardiovasc Disord ; 24(1): 354, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38992615

RESUMO

BACKGROUND: Hyperlipidemia damages vascular wall and serves as a foundation for diseases such as atherosclerosis, hypertension and stiffness. The NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is implicated in vascular dysfunction associated with hyperlipidemia-induced vascular injury. Sodium tanshinone IIA sulfonate (STS), a well-established cardiovascular protective drug with recognized anti-inflammatory, antioxidant, and vasodilatory properties, is yet to be thoroughly investigated for its impact on vascular relaxant imbalance induced by hyperlipidemia. METHODS: In this study, we treated ApoE-knockout (ApoE-/-) mouse with STS and assessed the activation of the NLRP3 inflammasome, expression of MMP2/9, integrity of elastic fibers, and vascular constriction and relaxation. RESULTS: Our findings reveal that STS intervention effectively preserves elastic fibers, significantly restores aortic relaxation function in ApoE-/- mice, and reduces their excessive constriction. Furthermore, STS inhibits the phosphorylation of spleen tyrosine kinase (SYK), suppresses NLRP3 inflammasome activation, and reduces MMP2/9 expression. CONCLUSIONS: These results demonstrate that STS protects vascular relaxation against hyperlipidemia-induced damage through modulation of the SYK-NLRP3 inflammasome-MMP2/9 pathway. This research provides novel insights into the mechanisms underlying vascular relaxation impairment in a hyperlipidemic environment and uncovers a unique mechanism by which STS preserves vascular relaxation, offering valuable foundational research evidence for its clinical application in promoting vascular health.


Assuntos
Modelos Animais de Doenças , Inflamassomos , Metaloproteinase 2 da Matriz , Metaloproteinase 9 da Matriz , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Proteína 3 que Contém Domínio de Pirina da Família NLR , Fenantrenos , Transdução de Sinais , Quinase Syk , Vasodilatação , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Quinase Syk/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Fenantrenos/farmacologia , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Vasodilatação/efeitos dos fármacos , Hiperlipidemias/tratamento farmacológico , Hiperlipidemias/fisiopatologia , Vasodilatadores/farmacologia , Fosforilação , Camundongos , Aorta/efeitos dos fármacos , Aorta/fisiopatologia , Aorta/metabolismo , Aorta/enzimologia , Apolipoproteínas E
3.
J Hazard Mater ; 476: 135126, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38991642

RESUMO

Cadmium (Cd) accumulates in rice and then moves up the food chain, causing serious health problems for humans. Glutathione S-transferase (GST) binds exogenous hazardous compounds to glutathione (GSH), which performs a variety of roles in plant responses to Cd stress. Here, Cd stimulated the transcripts of a novel OsGST gene, and the OsGST protein, which was localized in the nucleus and cytoplasm, was also induced by Cd. In OsGST deletion mutant lines generated by CRISPR/Cas9, more Cd was accumulated, and Cd hypersensitive phenotypes were observed, while transgenic lines overexpressing OsGST exhibited enhanced Cd tolerance and less Cd accumulation. Further analysis indicated that the osgst mutants exhibited considerably greater reactive oxygen species (ROS) and higher GSH level, and the antioxidant activity associated genes' expression were down-regulated, imply that OsGST controlled rice Cd accumulation and resistance through preserving the equilibrium of the GSH and redox in rice.

4.
iScience ; 27(7): 110189, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38989457

RESUMO

Autologous cancer vaccines represent a promising therapeutic approach against tumor relapse. Herein, a concise biomineralization strategy was developed to prepare an immunostimulatory autologous cancer vaccine through protein antigen-mediated growth of flower-like manganese phosphate (MnP) nanoparticles. In addition to inheriting the cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING)-activating capacity of Mn2+, the resulting ovalbumin (OVA)-loaded MnP (OVA@MnP) nanoparticles with superior stability and pH-responsiveness enabled efficient priming of antigen-specific CD8+ T cell expansion through promoting the endo/lysosome escape and subsequent antigen cross-presentation of OVA. Resultantly, OVA@MnP vaccines upon subcutaneous vaccination elicited both prophylactic and therapeutic effects against OVA-expressing B16-F10 melanoma. Furthermore, the biomineralized autologous cancer vaccines prepared from the whole tumor cell lysates of the dissected tumors suppressed the growth of residual tumors, particularly in combination with anti-PD-1 immunotherapy. This study highlights a simple biomineralization approach for the controllable synthesis of cGAS-STING-activating autologous cancer vaccines to suppress postsurgical tumor relapse.

5.
Insects ; 15(7)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-39057197

RESUMO

The firefly genus Oculogryphus Jeng, Engel & Yang, 2007 is a rare-species group endemic to Asia. Since its establishment, its position has been controversial but never rigorously tested. To address this perplexing issue, we are the first to present the complete mitochondrial sequence of Oculogryphus, using the material of O. chenghoiyanae Yiu & Jeng, 2018 determined through a comprehensive morphological identification. Our analyses demonstrate that its mitogenome exhibits similar characteristics to that of Stenocladius, including a rearranged gene order between trnC and trnW, and a long intergenic spacer (702 bp) between the two rearranged genes, within which six remnants (29 bp) of trnW were identified. Further, we incorporated this sequence into phylogenetic analyses of Lampyridae based on different molecular markers and datasets using ML and BI analyses. The results consistently place Oculogryphus within the same clade as Stenocladius in all topologies, and the gene rearrangement is a synapomorphy for this clade. It suggests that Oculogryphus should be classified together with Stenocladius in the subfamily Ototretinae at the moment. This study provides molecular evidence confirming the close relationship between Oculogryphus and Stenocladius and discovers a new phylogenetic marker helpful in clarifying the monophyly of Ototretinae, which also sheds a new light on firefly evolution.

6.
Metabolites ; 14(7)2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-39057677

RESUMO

To investigate the dynamic changes in hippocampal metabolism after microwave radiation using liquid chromatography in tandem with mass spectrometry/mass spectrometry (LC-MS/MS) and to identify potential biomarkers. Wistar rats were randomly assigned to a sham group and a microwave radiation group. The rats in the microwave radiation group were exposed to 2.856 GHz for 15 min for three times, with 5 min intervals. The rats in the sham group were not exposed. Transmission electron microscope revealed blurring of the synaptic cleft and postsynaptic dense thickening in hippocampal neurons after microwave radiation. Metabolomic analysis revealed 38, 24, and 39 differentially abundant metabolites at 3, 7, and 14 days after radiation, respectively, and the abundance of 9 metabolites, such as argininosuccinic acid, was continuously decreased. After microwave radiation, the abundance of metabolites such as argininosuccinic acid was successively decreased, indicating that these metabolites could be potential biomarkers for hippocampal tissue injury.

7.
Medicine (Baltimore) ; 103(30): e38747, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39058887

RESUMO

This study aims to develop and validate a machine learning (ML) predictive model for assessing mortality in patients with malignant tumors and hyperkalemia (MTH). We extracted data on patients with MTH from the Medical Information Mart for Intensive Care-IV, version 2.2 (MIMIC-IV v2.2) database. The dataset was split into a training set (75%) and a validation set (25%). We used the Least Absolute Shrinkage and Selection Operator (LASSO) regression to identify potential predictors, which included clinical laboratory indicators and vital signs. Pearson correlation analysis tested the correlation between predictors. In-hospital death was the prediction target. The Area Under the Curve (AUC) and accuracy of the training and validation sets of 7 ML algorithms were compared, and the optimal 1 was selected to develop the model. The calibration curve was used to evaluate the prediction accuracy of the model further. SHapley Additive exPlanations (SHAP) and Local Interpretable Model-agnostic Explanations (LIME) enhanced model interpretability. 496 patients with MTH in the Intensive Care Unit (ICU) were included. After screening, 17 clinical features were included in the construction of the ML model, and the Pearson correlation coefficient was <0.8, indicating that the correlation between the clinical features was small. eXtreme Gradient Boosting (XGBoost) outperformed other algorithms, achieving perfect scores in the training set (accuracy: 1.000, AUC: 1.000) and high scores in the validation set (accuracy: 0.734, AUC: 0.733). The calibration curves indicated good predictive calibration of the model. SHAP analysis identified the top 8 predictive factors: urine output, mean heart rate, maximum urea nitrogen, minimum oxygen saturation, minimum mean blood pressure, maximum total bilirubin, mean respiratory rate, and minimum pH. In addition, SHAP and LIME performed in-depth individual case analyses. This study demonstrates the effectiveness of ML methods in predicting mortality risk in ICU patients with MTH. It highlights the importance of predictors like urine output and mean heart rate. SHAP and LIME significantly enhanced the model's interpretability.


Assuntos
Hiperpotassemia , Unidades de Terapia Intensiva , Aprendizado de Máquina , Neoplasias , Humanos , Hiperpotassemia/diagnóstico , Hiperpotassemia/mortalidade , Feminino , Masculino , Unidades de Terapia Intensiva/estatística & dados numéricos , Pessoa de Meia-Idade , Prognóstico , Neoplasias/mortalidade , Neoplasias/complicações , Idoso , Mortalidade Hospitalar , Algoritmos
8.
Inorg Chem ; 63(29): 13594-13601, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38973091

RESUMO

The development of low-cost and efficient photocatalysts to achieve water splitting to hydrogen (H2) is highly desirable but remains challenging. Herein, we design and synthesize two porous polymers (Co-Salen-P and Fe-Salen-P) by covalent bonding of salen metal complexes and pyrene chromophores for photocatalytic H2 evolution. The catalytic results demonstrate that the two polymers exhibit excellent catalytic performance for H2 generation in the absence of additional noble-metal photosensitizers and cocatalysts. Particularly, the H2 generation rate of Co-Salen-P reaches as high as 542.5 µmol g-1 h-1, which is not only 6 times higher than that of Fe-Salen-P but also higher than a large amount of reported Pt-assisted photocatalytic systems. Systematic studies show that Co-Salen-P displays faster charge separation and transfer efficiencies, thereby accounting for the significantly improved photocatalytic activity. This study provides a facile and efficient way to fabricate high-performance photocatalysts for H2 production.

9.
Zhongguo Zhong Yao Za Zhi ; 49(11): 2863-2870, 2024 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-39041145

RESUMO

Cinnamomum camphora chvar. borneol, a rare camphor tree variant recently identified in China, is distinguished by its high concentration of D-borneol, also known as " plant gold" due to its significant value. The essential oil extracted from this variant,rich in monoterpenes and sesquiterpenes, demonstrates a broad spectrum of pharmacological activities, including analgesic, antiinflammatory, antioxidant, cognition-enhancing, anti-bacterial, and insecticidal effects. These properties, underscored by extensive research, highlight the oil's potential in the biomedical, chemical, and food sectors as a valuable commodity. Nonetheless, the safety profile of this valuable oil remains poorly characterized, with its chemical composition and therapeutic efficacy subject to variations in the factors like geographic origin, harvesting timing, part used for extraction, and processing techniques. Such variability poses challenges to its clinical application and hampers the efficient exploitation of this resource. This review synthesizes current studies on C. camphora chvar. borneol essential oil and provides a detailed examination of its chemical and pharmacological profiles. In this study, we discuss existing research gaps and propose strategies for advancing its clinical use and industrial application, aiming to provide a foundational reference for future investigations and the resolution of its commercial and therapeutic challenges.


Assuntos
Canfanos , Cinnamomum camphora , Óleos Voláteis , Cinnamomum camphora/química , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Humanos , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia
11.
Cardiovasc Diabetol ; 23(1): 276, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39068437

RESUMO

BACKGROUND: Atherogenic index of plasma (AIP), a marker of atherosclerosis and cardiovascular disease (CVD). However, few studies have investigated association between AIP and all-cause mortality and specific-mortality in the general population. METHODS: This study included data from 14,063 American adults. The exposure variable was the AIP, which was defined as log10 (triglycerides/high-density lipoprotein cholesterol). The outcome variables included all-cause mortality and specific-mortality. Survey-weighted cox regressions were performed to evaluate the relation between AIP and all-cause mortality and specific-mortality. Weighted restricted cubic spline was conducted to examin the non-linear relationship. RESULTS: During 10 years of follow-up, we documented 2,077, 262, 854, and 476 cases of all-cause mortality, diabetes mortality, CVD mortality and cancer mortality, respectively. After adjustment for potential confounders, we found that atherogenic index of plasma (AIP) was significantly associated with an increased risk of diabetes mortality when comparing the highest to the lowest quantile of AIP in female (p for trend = 0.001) or participants older than 65 years (p for trend = 0.002). AIP was not significantly associated with all-cause mortality, CVD mortality and cancer mortality (p > 0.05). Moreover, a non-linear association was observed between AIP and all-cause mortality in a U-shape (p for non-linear = 0.0011), while a linear relationship was observed with diabetes mortality and non-diabetes mortality (p for linear < 0.0001). CONCLUSIONS: In this study, there is a no significant association between high AIP levels and a high risk of all-cause and cardiovascular mortality. Besides, a higher AIP was significantly associated with an increased risk of diabetes mortality, which only found in women older than 65 years. AIP was associated with all-cause mortality in a U-shape. This association could be explained by the finding that higher AIP predicted a higher risk of death from diabetes, and that lower AIP predicted a higher risk of death from non-diabetes causes.


We used a large national database and a prospective cohort study with a long follow-up period. Higher AIP was significantly associated with an increased risk of diabetes mortality, only in women older than 65 years. There is a no significant association between high AIP levels and a high risk of all-cause and cardiovascular mortality. AIP was associated with all-cause mortality in a U-shape. This finding suggest that controlling AIP levels may have a positive effect on reducing diabetes mortality.


Assuntos
Aterosclerose , Biomarcadores , Causas de Morte , HDL-Colesterol , Diabetes Mellitus , Triglicerídeos , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Medição de Risco , Biomarcadores/sangue , Aterosclerose/mortalidade , Aterosclerose/sangue , Aterosclerose/diagnóstico , Fatores de Risco , Fatores de Tempo , Adulto , Diabetes Mellitus/mortalidade , Diabetes Mellitus/sangue , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/epidemiologia , HDL-Colesterol/sangue , Estados Unidos/epidemiologia , Triglicerídeos/sangue , Prognóstico , Neoplasias/mortalidade , Neoplasias/sangue , Neoplasias/diagnóstico , Doenças Cardiovasculares/mortalidade , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/diagnóstico
12.
Materials (Basel) ; 17(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38998224

RESUMO

This study explores the integration of machine learning (ML) techniques to predict and optimize the compressive strength of alkali-activated materials (AAMs) sourced from four industrial waste streams: blast furnace slag, fly ash, reducing slag, and waste glass. Aimed at mitigating the labor-intensive trial-and-error method in AAM formulation, ML models can predict the compressive strength and then streamline the mixture compositions. By leveraging a dataset of only 42 samples, the Random Forest (RF) model underwent fivefold cross-validation to ensure reliability. Despite challenges posed by the limited datasets, meticulous data processing steps facilitated the identification of pivotal features that influence compressive strength. Substantial enhancement in predicting compressive strength was achieved with the RF model, improving the model accuracy from 0.05 to 0.62. Experimental validation further confirmed the ML model's efficacy, as the formulations ultimately achieved the desired strength threshold, with a significant 59.65% improvement over the initial experiments. Additionally, the fact that the recommended formulations using ML methods only required about 5 min underscores the transformative potential of ML in reshaping AAM design paradigms and expediting the development process.

13.
Sci Rep ; 14(1): 17665, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39085294

RESUMO

Diabetes accelerates vascular senescence, which is the basis for atherosclerosis and stiffness. The activation of NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome and oxidative stress are closely associated with the deteriorative senescence in endothelial cells (ECs) and vascular smooth muscle cells (VSMCs). For decades, Sodium Tanshinone IIA Sulfonate (STS) has been utilized as a cardiovascular medicine with acknowledged anti-inflammatory and anti-oxidative properties. Nevertheless, the impact of STS on vascular senescence remains unexplored in diabetes. Diabetic mice, primary ECs and VSMCs were transfected with the NLRP3 overexpression/knockout plasmid, the tumor necrosis factor alpha-induced protein 3 (TNFAIP3/A20) overexpression/knockout plasmid, and treated with STS to detect senescence-associated markers. In diabetic mice, STS treatment maintained catalase (CAT) level and vascular relaxation, reduced hydrogen peroxide probe (ROSgreen) fluorescence, p21 immunofluorescence, Senescence ß-Galactosidase Staining (SA-ß-gal) staining area, and collagen deposition in aortas. Mechanistically, STS inhibited NLRP3 phosphorylation (serine 194), NLRP3 dimer formation, NLRP3 expression, and NLRP3-PYCARD (ASC) colocalization. It also suppressed the phosphorylation of IkappaB alpha (IκBα) and NFκB, preserved A20 and CAT levels, reduced ROSgreen density, and decreased the expression of p21 and SA-ß-gal staining in ECs and VSMCs under HG culture. Our findings indicate that STS mitigates vascular senescence by modulating the A20-NFκB-NLRP3 inflammasome-CAT pathway in hyperglycemia conditions, offering novel insights into NLRP3 inflammasome activation and ECs and VSMCs senescence under HG culture. This study highlights the potential mechanism of STS in alleviating senescence in diabetic blood vessels, and provides essential evidence for its future clinical application.


Assuntos
Senescência Celular , Diabetes Mellitus Experimental , Inflamassomos , NF-kappa B , Proteína 3 que Contém Domínio de Pirina da Família NLR , Fenantrenos , Transdução de Sinais , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Camundongos , NF-kappa B/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Fenantrenos/farmacologia , Senescência Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Catalase/metabolismo , Masculino , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos
14.
Methods ; 229: 125-132, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38964595

RESUMO

DNase I hypersensitive sites (DHSs) are chromatin regions highly sensitive to DNase I enzymes. Studying DHSs is crucial for understanding complex transcriptional regulation mechanisms and localizing cis-regulatory elements (CREs). Numerous studies have indicated that disease-related loci are often enriched in DHSs regions, underscoring the importance of identifying DHSs. Although wet experiments exist for DHSs identification, they are often labor-intensive. Therefore, there is a strong need to develop computational methods for this purpose. In this study, we used experimental data to construct a benchmark dataset. Seven feature extraction methods were employed to capture information about human DHSs. The F-score was applied to filter the features. By comparing the prediction performance of various classification algorithms through five-fold cross-validation, random forest was proposed to perform the final model construction. The model could produce an overall prediction accuracy of 0.859 with an AUC value of 0.837. We hope that this model can assist scholars conducting DNase research in identifying these sites.


Assuntos
Cromatina , Desoxirribonuclease I , Genoma Humano , Humanos , Desoxirribonuclease I/metabolismo , Desoxirribonuclease I/genética , Desoxirribonuclease I/química , Cromatina/genética , Cromatina/metabolismo , Cromatina/química , Biologia Computacional/métodos , Algoritmos , Sequências Reguladoras de Ácido Nucleico/genética
15.
BMC Ophthalmol ; 24(1): 315, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075405

RESUMO

AIM: Recent imaging studies have found significant abnormalities in the brain's functional or structural connectivity among patients with high myopia (HM), indicating a heightened risk of cognitive impairment and other behavioral changes. However, there is a lack of research on the topological characteristics and connectivity changes of the functional networks in HM patients. In this study, we employed graph theoretical analysis to investigate the topological structure and regional connectivity of the brain function network in HM patients. METHODS: We conducted rs-fMRI scans on 82 individuals with HM and 59 healthy controls (HC), ensuring that the two groups were matched for age and education level. Through graph theoretical analysis, we studied the topological structure of whole-brain functional networks among participants, exploring the topological properties and differences between the two groups. RESULTS: In the range of 0.05 to 0.50 of sparsity, both groups demonstrated a small-world architecture of the brain network. Compared to the control group, HM patients showed significantly lower values of normalized clustering coefficient (γ) (P = 0.0101) and small-worldness (σ) (P = 0.0168). Additionally, the HM group showed lower nodal centrality in the right Amygdala (P < 0.001, Bonferroni-corrected). Notably, there is an increase in functional connectivity (FC) between the saliency network (SN) and Sensorimotor Network (SMN) in the HM group, while the strength of FC between the basal ganglia is relatively weaker (P < 0.01). CONCLUSION: HM Patients exhibit reduced small-world characteristics in their brain networks, with significant drops in γ and σ values indicating weakened global interregional information transfer ability. Not only that, the topological properties of the amygdala nodes in HM patients significantly decline, indicating dysfunction within the brain network. In addition, there are abnormalities in the FC between the SN, SMN, and basal ganglia networks in HM patients, which is related to attention regulation, motor impairment, emotions, and cognitive performance. These findings may provide a new mechanism for central pathology in HM patients.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Rede Nervosa , Humanos , Masculino , Feminino , Adulto , Imageamento por Ressonância Magnética/métodos , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Rede Nervosa/diagnóstico por imagem , Adulto Jovem , Mapeamento Encefálico/métodos , Miopia Degenerativa/fisiopatologia , Descanso/fisiologia
16.
J Environ Manage ; 367: 121966, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39068783

RESUMO

In this study, Co3O4@MoS2 is prepared as anodic catalytic material for microbial fuel cells (MFCs). As the mass fraction of MoS2 is 20%, the best performance of Co3O4@MoS2 composite catalytic material is achieved, and the addition of MoS2 enhances both the electrical conductivity and catalytic performance of the composite catalyst. Through the structural characterization of Co3O4@MoS2 composite catalytic material, nanorod-like Co3O4 and lamellar MoS2 interweaved and stacked each other, and the agglomeration of Co3O4 is weakened. Among the four groups of single-chamber MFCs constructed, the Co3O4@MoS2-MFC shows the best power production performance with a maximum stable output voltage of to 539 mV and a maximum power density of up to 2221 mW/m2. Additionally, the ammonia nitrogen removal rate of the MFCs loaded with catalysts is enhanced by about 10% compared with the blank carbon cloth MFC. Overall, the findings suggest that Co3O4@MoS2 composite catalysts can significantly improve the performance of MFCs, making them more effective for both energy production and wastewater treatment.

17.
J Pineal Res ; 76(5): e12995, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39073181

RESUMO

Melatonin (MT) has been implicated in the plant response to phosphorus (P) stress; however, the precise molecular mechanisms involved remain unclear. This study investigated whether MT controls internal P distribution and root cell wall P remobilization in rice. Rice was treated with varying MT and P levels and analyzed using biochemical and molecular techniques to study phosphorus utilization. The results demonstrated that low P levels lead to a rapid increase in endogenous MT levels in rice roots. Furthermore, the exogenous application of MT significantly improved rice tolerance to P deficiency, as evidenced by the increased biomass and reduced proportion of roots to shoots under P-deficient conditions. MT application also mitigated the decrease in P content regardless in both the roots and shoots. Mechanistically, MT accelerated the reutilization of P, particularly in the root pectin fraction, leading to increased soluble P liberation. In addition, MT enhanced the expression of OsPT8, a gene involved in root-to-shoot P translocation. Furthermore, we observed that MT induced the production of nitric oxide (NO) in P-deficient rice roots and that the mitigating effect of MT on P deficiency was compromised in the presence of the NO inhibitor, c-PTIO, implying that NO is involved in the MT-facilitated mitigation of P deficiency in rice. Overall, our findings highlight the potential of MT as a promising strategy for enhancing rice tolerance to P deficiency and improving P use efficiency in agricultural practices.


Assuntos
Parede Celular , Melatonina , Óxido Nítrico , Oryza , Fósforo , Raízes de Plantas , Oryza/metabolismo , Fósforo/metabolismo , Melatonina/metabolismo , Melatonina/farmacologia , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Parede Celular/metabolismo , Parede Celular/efeitos dos fármacos , Óxido Nítrico/metabolismo
18.
Nat Commun ; 15(1): 6354, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39069548

RESUMO

Fluorinated phenyl azides (FPA) enable photo-structuring of π-conjugated polymer films for electronic device applications. Despite their potential, FPAs have faced limitations regarding their crosslinking efficiency, and more importantly, their impact on critical semiconductor properties, such as charge-carrier mobility. Here, we report that azide photolysis and photocrosslinking can achieve unity quantum efficiencies for specific FPAs. This suggests preferential nitrene insertion into unactivated C‒H bonds over benzazirine and ketenimine reactions, which we attribute to rapid interconversion between the initially formed hot states. Furthermore, we establish a structure‒activity relationship for carrier mobility quenching. The binding affinity of FPA crosslinker to polymer π-stacks governs its propensity for mobility quenching in both PM6 and PBDB-T used as model conjugated polymers. This binding affinity can be suppressed by FPA ring substitution, but varies in a non-trivial way with π-stack order. Utilizing the optimal FPA, photocrosslinking enables the fabrication of morphology-stabilized, acceptor-infiltrated donor polymer networks (that is, PBDB-T: ITIC and PM6: Y6) for solar cells. Our findings demonstrate the exceptional potential of the FPA photochemistry and offer a promising approach to address the challenges of modelling realistic molecular interactions in complex polymer morphologies, moving beyond the limitations of Flory‒Huggins mean field theory.

19.
J Pharm Pharmacol ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39066578

RESUMO

OBJECTIVES: Rheumatoid arthritis (RA) seriously affects the daily life of people. The whole plant of Artemisia ordosica Krasch. (AOK) has been used in folk medicine. This study aimed to investigate the in vivo anti-RA effects of AOK extract (AOKE) on collagen-induced arthritis in rats. METHODS: AOKE (400, 200, or 100 mg/kg) was administered orally to animals for 30 days. Body weight, paw swelling, arthritis index, thymus, and spleen indices, and pathological changes were assessed for effects of AOKE on RA. Furthermore, the inflammatory cytokines in rat serum were detected. In addition, the expressions of STAT3, Caspase-3, Galectin-3, and S100A9 in synovial tissue were researched using immunohistochemistry. KEY FINDINGS: The AOKE significantly reduced the arthritis indices, paw swelling, spleen, and thymus indices. Meanwhile, AOKE (400 mg/kg) decreased the levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, IL-6, IL-17A, and increased the level of IL-10 in rat serum. Histopathological examination showed that AOKE reduced inflammatory cell infiltration and cartilage erosion. Then, AOKE decreased the expressions of STAT3, Galectin-3, S100A9, and increased the expression of Caspase-3. CONCLUSION: AOKE had interesting anti-RA activity in rats, which deserved further research for the development and clinical use of this medicinal resource.

20.
Front Microbiol ; 15: 1419615, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952452

RESUMO

African swine fever (ASF) is an infectious disease characterized by hemorrhagic fever, which is highly pathogenic and causes severe mortality in domestic pigs. It is caused by the African swine fever virus (ASFV). ASFV is a large DNA virus and primarily infects porcine monocyte macrophages. The interaction between ASFV and host macrophages is the major reason for gross pathological lesions caused by ASFV. Necroptosis is an inflammatory programmed cell death and plays an important immune role during virus infection. However, whether and how ASFV induces macrophage necroptosis and the effect of necroptosis signaling on host immunity and ASFV infection remains unknown. This study uncovered that ASFV infection activates the necroptosis signaling in vivo and macrophage necroptosis in vitro. Further evidence showed that ASFV infection upregulates the expression of ZBP1 and RIPK3 to consist of the ZBP1-RIPK3-MLKL necrosome and further activates macrophage necroptosis. Subsequently, multiple Z-DNA sequences were predicted to be present in the ASFV genome. The Z-DNA signals were further confirmed to be present and colocalized with ZBP1 in the cytoplasm and nucleus of ASFV-infected cells. Moreover, ZBP1-mediated macrophage necroptosis provoked the extracellular release of proinflammatory cytokines, including TNF-α and IL-1ß induced by ASFV infection. Finally, we demonstrated that ZBP1-mediated necroptosis signaling inhibits ASFV replication in host macrophages. Our findings uncovered a novel mechanism by which ASFV induces macrophage necroptosis by facilitating Z-DNA accumulation and ZBP1 necrosome assembly, providing significant insights into the pathogenesis of ASFV infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...