Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NPJ Vaccines ; 9(1): 67, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553525

RESUMO

Ebola virus disease (EVD) is a filoviral infection caused by virus species of the Ebolavirus genus including Zaire ebolavirus (EBOV) and Sudan ebolavirus (SUDV). We investigated the safety and immunogenicity of a heterologous prime-boost regimen involving a chimpanzee adenovirus 3 vectored Ebola vaccine [either monovalent (cAd3-EBOZ) or bivalent (cAd3-EBO)] prime followed by a recombinant modified vaccinia virus Ankara EBOV vaccine (MVA-EbolaZ) boost in two phase 1/1b randomized open-label clinical trials in healthy adults in the United States (US) and Uganda (UG). Trial US (NCT02408913) enrolled 140 participants, including 26 EVD vaccine-naïve and 114 cAd3-Ebola-experienced participants (April-November 2015). Trial UG (NCT02354404) enrolled 90 participants, including 60 EVD vaccine-naïve and 30 DNA Ebola vaccine-experienced participants (February-April 2015). All tested vaccines and regimens were safe and well tolerated with no serious adverse events reported related to study products. Solicited local and systemic reactogenicity was mostly mild to moderate in severity. The heterologous prime-boost regimen was immunogenic, including induction of durable antibody responses which peaked as early as two weeks and persisted up to one year after each vaccination. Different prime-boost intervals impacted the magnitude of humoral and cellular immune responses. The results from these studies demonstrate promising implications for use of these vaccines in both prophylactic and outbreak settings.

2.
Lancet Infect Dis ; 23(12): 1408-1417, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37544326

RESUMO

BACKGROUND: Sudan Ebola virus can cause severe viral disease, with an average case fatality rate of 54%. A recent outbreak of Sudan Ebola virus in Uganda caused 55 deaths among 164 confirmed cases in the second half of 2022. Although vaccines and therapeutics specific for Zaire Ebola virus have been approved for use during outbreak situations, Sudan Ebola virus is an antigenically distinct virus with no approved vaccines available. METHODS: In this phase 1, open-label, dose-escalation trial we evaluated the safety, tolerability, and immunogenicity of a monovalent chimpanzee adenovirus 3 vaccine against Sudan Ebola virus (cAd3-EBO S) at Makerere University Walter Reed Project in Kampala, Uganda. Study participants were recruited from the Kampala metropolitan area using International Review Board-approved written and electronic media explaining the trial intervention. Healthy adults without previous receipt of Ebola, Marburg, or cAd3 vectored-vaccines were enrolled to receive cAd3-EBO S at either 1 × 1010 or 1 × 1011 particle units (PU) in a single intramuscular vaccination and were followed up for 48 weeks. Primary safety and tolerability endpoints were assessed in all vaccine recipients by reactogenicity for the first 7 days, adverse events for the first 28 days, and serious adverse events throughout the study. Secondary immunogenicity endpoints included evaluation of binding antibody and T-cell responses against the Sudan Ebola virus glycoprotein, and neutralising antibody responses against the cAd3 vector at 4 weeks after vaccination. This study is registered with ClinicalTrials.gov, NCT04041570, and is completed. FINDINGS: 40 healthy adults were enrolled between July 22 and Oct 1, 2019, with 20 receiving 1 × 1010 PU and 20 receiving 1 × 1011 PU of cAd3-EBO S. 38 (95%) participants completed all follow-up visits. The cAd3-EBO S vaccine was well tolerated with no severe adverse events. The most common reactogenicity symptoms were pain or tenderness at the injection site (34 [85%] of 40), fatigue (29 [73%] of 40), and headache (26 [65%] of 40), and were mild to moderate in severity. Positive responses for glycoprotein-specific binding antibodies were induced by 2 weeks in 31 (78%) participants, increased to 34 (85%) participants by 4 weeks, and persisted to 48 weeks in 31 (82%) participants. Most participants developed glycoprotein-specific T-cell responses (20 [59%, 95% CI 41-75] of 34; six participants were removed from the T cell analysis after failing quality control parameters) by 4 weeks after vaccination, and neutralising titres against the cAd3 vector were also increased from baseline (90% inhibitory concentration of 47, 95% CI 30-73) to 4 weeks after vaccination (196, 125-308). INTERPRETATION: The cAd3-EBO S vaccine was safe at both doses, rapidly inducing immune responses in most participants after a single injection. The rapid onset and durability of the vaccine-induced antibodies make this vaccine a strong candidate for emergency deployment in Sudan Ebola virus outbreaks. FUNDING: National Institutes of Health via interagency agreement with Walter Reed Army Institute of Research.


Assuntos
Adenovirus dos Símios , Vacinas contra Ebola , Ebolavirus , Doença pelo Vírus Ebola , Animais , Humanos , Adulto , Doença pelo Vírus Ebola/prevenção & controle , Pan troglodytes , Uganda , Sudão , Ebolavirus/genética , Anticorpos Antivirais , Adenovirus dos Símios/genética , Adenoviridae/genética , Glicoproteínas , Imunogenicidade da Vacina , Método Duplo-Cego
3.
Lancet ; 401(10373): 294-302, 2023 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-36709074

RESUMO

BACKGROUND: WHO has identified Marburg virus as an emerging virus requiring urgent vaccine research and development, particularly due to its recent emergence in Ghana. We report results from a first-in-human clinical trial evaluating a replication-deficient recombinant chimpanzee adenovirus type 3 (cAd3)-vectored vaccine encoding a wild-type Marburg virus Angola glycoprotein (cAd3-Marburg) in healthy adults. METHODS: We did a first-in-human, phase 1, open-label, dose-escalation trial of the cAd3-Marburg vaccine at the Walter Reed Army Institute of Research Clinical Trials Center in the USA. Healthy adults aged 18-50 years were assigned to receive a single intramuscular dose of cAd3-Marburg vaccine at either 1 × 1010 or 1 × 1011 particle units (pu). Primary safety endpoints included reactogenicity assessed for the first 7 days and all adverse events assessed for 28 days after vaccination. Secondary immunogenicity endpoints were assessment of binding antibody responses and T-cell responses against the Marburg virus glycoprotein insert, and assessment of neutralising antibody responses against the cAd3 vector 4 weeks after vaccination. This study is registered with ClinicalTrials.gov, NCT03475056. FINDINGS: Between Oct 9, 2018, and Jan 31, 2019, 40 healthy adults were enrolled and assigned to receive a single intramuscular dose of cAd3-Marburg vaccine at either 1 × 1010 pu (n=20) or 1 × 1011 pu (n=20). The cAd3-Marburg vaccine was safe, well tolerated, and immunogenic. All enrolled participants received cAd3-Marburg vaccine, with 37 (93%) participants completing follow-up visits; two (5%) participants moved from the area and one (3%) was lost to follow-up. No serious adverse events related to vaccination occurred. Mild to moderate reactogenicity was observed after vaccination, with symptoms of injection site pain and tenderness (27 [68%] of 40 participants), malaise (18 [45%] of 40 participants), headache (17 [43%] of 40 participants), and myalgia (14 [35%] of 40 participants) most commonly reported. Glycoprotein-specific antibodies were induced in 38 (95%) of 40 participants 4 weeks after vaccination, with geometric mean titres of 421 [95% CI 209-846] in the 1 × 1010 pu group and 545 [276-1078] in the 1 × 1011 pu group, and remained significantly elevated at 48 weeks compared with baseline titres (39 [95% CI 13-119] in the 1 ×1010 pu group and 27 [95-156] in the 1 ×1011 pu group; both p<0·0001). T-cell responses to the glycoprotein insert and neutralising responses against the cAd3 vector were also increased at 4 weeks after vaccination. INTERPRETATION: This first-in-human trial of this cAd3-Marburg vaccine showed the agent is safe and immunogenic, with a safety profile similar to previously tested cAd3-vectored filovirus vaccines. 95% of participants produced a glycoprotein-specific antibody response at 4 weeks after a single vaccination, which remained in 70% of participants at 48 weeks. These findings represent a crucial step in the development of a vaccine for emergency deployment against a re-emerging pathogen that has recently expanded its reach to new regions. FUNDING: National Institutes of Health.


Assuntos
Adenovirus dos Símios , Marburgvirus , Animais , Adulto , Humanos , Pan troglodytes , Anticorpos Antivirais , Vacinas Sintéticas/efeitos adversos , Adenoviridae , Glicoproteínas , Método Duplo-Cego
4.
Lancet Infect Dis ; 23(5): 578-588, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36708738

RESUMO

BACKGROUND: Human monoclonal antibodies might offer an important new approach to reduce malaria morbidity and mortality. In the first two parts of a three-part clinical trial, the antimalarial monoclonal antibody CIS43LS conferred high protection against parasitaemia at doses of 20 mg/kg or 40 mg/kg administered intravenously followed by controlled human malaria infection. The ability of CIS43LS to confer protection at lower doses or by the subcutaneous route is unknown. We aimed to provide data on the safety and optimisation of dose and route for the human antimalaria monoclonal antibody CIS43LS. METHODS: VRC 612 Part C was the third part of a three-part, first-in-human, phase 1, adaptive trial, conducted at the University of Maryland, Baltimore Center for Vaccine Development and Global Health, Baltimore, MD, USA. We enrolled adults aged 18-50 years with no previous malaria vaccinations or infections, in a sequential, dose-escalating manner. Eligible participants received the monoclonal antibody CIS43LS in a single, open-label dose of 1 mg/kg, 5 mg/kg, or 10 mg/kg intravenously, or 5 mg/kg or 10 mg/kg subcutaneously. Participants underwent controlled human malaria infection by the bites of five mosquitoes infected with Plasmodium falciparum 3D7 strain approximately 8 weeks after their monoclonal antibody inoculation. Six additional control participants who did not receive CIS43LS underwent controlled human malaria infection simultaneously. Participants were followed-up daily on days 7-18 and day 21, with qualitative PCR used for P falciparum detection. Participants who tested positive for P falciparum were treated with atovaquone-proguanil and those who remained negative were treated at day 21. Participants were followed-up until 24 weeks after dosing. The primary outcome was safety and tolerability of CIS43LS at each dose level, assessed in the as-treated population. Secondary outcomes included protective efficacy of CIS43LS after controlled human malaria infection. This trial is now complete and is registered with ClinicalTrials.gov, NCT04206332. FINDINGS: Between Sept 1, 2021, and Oct 29, 2021, 47 people were assessed for eligibility and 31 were enrolled (one subsequently withdrew and was replaced) and assigned to receive doses of 1 mg/kg (n=7), 5 mg/kg (n=4), and 10 mg/kg (n=3) intravenously and 5 mg/kg (n=4) and 10 mg/kg (n=4) subcutaneously, or to the control group (n=8). CIS43LS administration was safe and well tolerated; no serious adverse events occurred. CIS43LS protected 18 (82%) of 22 participants who received a dose. No participants developed parasitaemia following dosing at 5 mg/kg intravenously or subcutaneously, or at 10 mg/kg intravenously or subcutaneously. All six control participants and four of seven participants dosed at 1 mg/kg intravenously developed parasitaemia after controlled human malaria infection. INTERPRETATION: CIS43LS was safe and well tolerated, and conferred protection against P falciparum at low doses and by the subcutaneous route, providing evidence that this approach might be useful to prevent malaria across several clinical use cases. FUNDING: National Institute of Allergy and Infectious Diseases, National Institutes of Health.


Assuntos
Antimaláricos , Vacinas Antimaláricas , Malária Falciparum , Adulto , Animais , Humanos , Anticorpos Monoclonais/uso terapêutico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/prevenção & controle , Plasmodium falciparum , Vacinas Antimaláricas/uso terapêutico
5.
N Engl J Med ; 387(5): 397-407, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35921449

RESUMO

BACKGROUND: New approaches for the prevention and elimination of malaria, a leading cause of illness and death among infants and young children globally, are needed. METHODS: We conducted a phase 1 clinical trial to assess the safety and pharmacokinetics of L9LS, a next-generation antimalarial monoclonal antibody, and its protective efficacy against controlled human malaria infection in healthy adults who had never had malaria or received a vaccine for malaria. The participants received L9LS either intravenously or subcutaneously at a dose of 1 mg, 5 mg, or 20 mg per kilogram of body weight. Within 2 to 6 weeks after the administration of L9LS, both the participants who received L9LS and the control participants underwent controlled human malaria infection in which they were exposed to mosquitoes carrying Plasmodium falciparum (3D7 strain). RESULTS: No safety concerns were identified. L9LS had an estimated half-life of 56 days, and it had dose linearity, with the highest mean (±SD) maximum serum concentration (Cmax) of 914.2±146.5 µg per milliliter observed in participants who had received 20 mg per kilogram intravenously and the lowest mean Cmax of 41.5±4.7 µg per milliliter observed in those who had received 1 mg per kilogram intravenously; the mean Cmax was 164.8±31.1 in the participants who had received 5 mg per kilogram intravenously and 68.9±22.3 in those who had received 5 mg per kilogram subcutaneously. A total of 17 L9LS recipients and 6 control participants underwent controlled human malaria infection. Of the 17 participants who received a single dose of L9LS, 15 (88%) were protected after controlled human malaria infection. Parasitemia did not develop in any of the participants who received 5 or 20 mg per kilogram of intravenous L9LS. Parasitemia developed in 1 of 5 participants who received 1 mg per kilogram intravenously, 1 of 5 participants who received 5 mg per kilogram subcutaneously, and all 6 control participants through 21 days after the controlled human malaria infection. Protection conferred by L9LS was seen at serum concentrations as low as 9.2 µg per milliliter. CONCLUSIONS: In this small trial, L9LS administered intravenously or subcutaneously protected recipients against malaria after controlled infection, without evident safety concerns. (Funded by the National Institute of Allergy and Infectious Diseases; VRC 614 ClinicalTrials.gov number, NCT05019729.).


Assuntos
Anticorpos Monoclonais , Malária , Administração Cutânea , Administração Intravenosa , Adulto , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/efeitos adversos , Anticorpos Monoclonais/farmacocinética , Criança , Pré-Escolar , Humanos , Malária/prevenção & controle , Malária Falciparum/tratamento farmacológico , Malária Falciparum/prevenção & controle , Parasitemia/parasitologia , Plasmodium falciparum
6.
EClinicalMedicine ; 48: 101477, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35783486

RESUMO

Background: Advances in therapeutic drugs have increased life-expectancies for HIV-infected individuals, but the need for an effective vaccine remains. We assessed safety and immunogenicity of HIV-1 vaccine, Trimer 4571 (BG505 DS-SOSIP.664) adjuvanted with aluminum hydroxide (alum), in HIV-negative adults. Methods: We conducted a phase I, randomized, open-label, dose-escalation trial at the National Institutes of Health Clinical Center in Bethesda, MD, USA. Eligible participants were HIV-negative, healthy adults between 18-50 years. Participants were randomized 1:1 to receive Trimer 4571 adjuvanted with 500 mcg alum by either the subcutaneous (SC) or intramuscular (IM) route at weeks 0, 8, and 20 in escalating doses of 100 mcg or 500 mcg. The primary objectives were to evaluate the safety and tolerability of Trimer 4571 with a secondary objective of evaluating vaccine-induced antibody responses. The primary and safety endpoints were evaluated in all participants who received at least one dose of Trimer 4571. Trial results were summarized using descriptive statistics. This trial is registered at ClinicalTrials.gov, NCT03783130. Findings: Between March 7 and September 11, 2019, 16 HIV-negative participants were enrolled, including six (38%) males and ten (62%) females. All participants received three doses of Trimer 4571. Solicited reactogenicity was mild to moderate in severity, with one isolated instance of severe injection site redness (6%) following a third 500 mcg SC administration. The most commonly reported solicited symptoms included mild injection site tenderness in 14 (88%) and mild myalgia in six (38%) participants. The most frequent unsolicited adverse event attributed to vaccination was mild injection site pruritus in six (38%) participants. Vaccine-induced seropositivity occurred in seven (44%) participants and resolved in all but one (6%). No serious adverse events occurred. Trimer 4571-specific binding antibodies were detected in all groups two weeks after regimen completion, primarily focused on the glycan-free trimer base. Neutralizing antibody activity was limited to the 500 mcg dose groups. Interpretation: Trimer 4571 was safe, well tolerated, and immunogenic in this first-in-human trial. While this phase 1 trial is limited in size, our results inform and support further evaluation of prefusion-stabilized HIV-1 envelope trimers as a component of vaccine design strategies to generate broadly neutralizing antibodies against HIV-1. Funding: Intramural Research Program of the Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health.

7.
Curr Opin HIV AIDS ; 17(4): 247-257, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35762380

RESUMO

PURPOSE OF REVIEW: Anti-HIV-1 broadly neutralizing antibodies (bNAbs) are promising agents in the fight against the AIDS epidemic. Multiple bNAbs have been already evaluated in clinical trials with encouraging results. This review discusses the use of bNAbs for the prevention and treatment of HIV-1 infection, focusing on manufactured products that have been evaluated in clinical settings. RECENT FINDINGS: More than 17 bNAbs have been evaluated for safety and pharmacokinetics in humans. The vast majority presented a well tolerated profile and were generally well tolerated. Serum half-life varied from 12 to 73.5 days and can be improved by the addition of mutations to the Fc regions. Results from the antibody-mediated prevention (AMP) study show that VRC01, a CD4-binding-site bNAb, was effective at preventing the acquisition of sensitive HIV-1 strains but did not prevent the acquisition of strains whose in vitro sensitivity to the antibody had an IC80 of more than 1 µg/ml. New bNAb combinations to improve coverage are currently being evaluated. SUMMARY: In this review, we discuss the current landscape of HIV-1 bNAbs in clinical development. We also present the current strategies employed to improve the breadth, potency, serum half-life, effector function and administration of these compounds.


Assuntos
Infecções por HIV , HIV-1 , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Amplamente Neutralizantes , Anticorpos Anti-HIV , Infecções por HIV/tratamento farmacológico , Infecções por HIV/prevenção & controle , HIV-1/genética , Humanos
8.
Lancet Infect Dis ; 22(8): 1210-1220, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35568049

RESUMO

BACKGROUND: Western (WEEV), eastern (EEEV), and Venezuelan (VEEV) equine encephalitis viruses are mosquito-borne pathogens classified as potential biological warfare agents for which there are currently no approved human vaccines or therapies. We aimed to evaluate the safety, tolerability, and immunogenicity of an investigational trivalent virus-like particle (VLP) vaccine, western, eastern, and Venezuelan equine encephalitis (WEVEE) VLP, composed of WEEV, EEEV, and VEEV VLPs. METHODS: The WEVEE VLP vaccine was evaluated in a phase 1, randomised, open-label, dose-escalation trial at the Hope Clinic of the Emory Vaccine Center at Emory University, Atlanta, GA, USA. Eligible participants were healthy adults aged 18-50 years with no previous vaccination history with an investigational alphavirus vaccine. Participants were assigned to a dose group of 6 µg, 30 µg, or 60 µg vaccine product and were randomly assigned (1:1) to receive the WEVEE VLP vaccine with or without aluminium hydroxide suspension (alum) adjuvant by intramuscular injection at study day 0 and at week 8. The primary outcomes were the safety and tolerability of the vaccine (assessed in all participants who received at least one administration of study product) and the secondary outcome was immune response measured as neutralising titres by plaque reduction neutralisation test (PRNT) 4 weeks after the second vaccination. This trial is registered at ClinicalTrials.gov, NCT03879603. FINDINGS: Between April 2, 2019, and June 13, 2019, 30 trial participants were enrolled (mean age 32 years, range 21-48; 16 [53%] female participants and 14 [47%] male participants). Six groups of five participants each received 6 µg, 30 µg, or 60 µg vaccine doses with or without adjuvant, and all 30 participants completed study follow-up. Vaccinations were safe and well tolerated. The most frequently reported symptoms were mild injection-site pain and tenderness (22 [73%] of 30) and malaise (15 [50%] of 30). Dose-dependent differences in the frequency of pain and tenderness were found between the 6 µg, 30 µg, and 60 µg groups (p=0·0217). No significant differences were observed between dosing groups for any other reactogenicity symptom. Two adverse events (mild elevated blood pressure and moderate asymptomatic neutropenia) were assessed as possibly related to the study product in one trial participant (60 µg dose with alum); both resolved without clinical sequelae. 4 weeks after second vaccine administration, neutralising antibodies were induced in all study groups with the highest response seen against all three vaccine antigens in the 30 µg plus alum group (PRNT80 geometric mean titre for EEEV 60·8, 95% CI 29·9-124·0; for VEEV 111·5, 49·8-249·8; and for WEEV 187·9, 90·0-392·2). Finally, 4 weeks after second vaccine administration, for all doses, the majority of trial participants developed an immune response to all three vaccine components (24 [83%] of 29 for EEEV; 26 [90%] of 29 for VEEV; 27 [93%] of 29 for WEEV; and 22 [76%] of 29 for EEEV, VEEV, and WEEV combined). INTERPRETATION: The favourable safety profile and neutralising antibody responses, along with pressing public health need, support further evaluation of the WEVEE VLP vaccine in advanced-phase clinical trials. FUNDING: The Vaccine Research Center of the National Institute of Allergy and Infectious Diseases, National Institutes of Health funded the clinical trial. The US Department of Defense contributed funding for manufacturing of the study product.


Assuntos
Alphavirus , Vírus da Encefalite Equina Venezuelana , Vacinas de Partículas Semelhantes a Vírus , Adjuvantes Imunológicos , Adulto , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Método Duplo-Cego , Feminino , Cavalos , Humanos , Imunogenicidade da Vacina , Masculino , Pessoa de Meia-Idade , Dor , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...