Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Crit Care ; 28(1): 186, 2024 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-38812006

RESUMO

Critical illness syndromes including sepsis, acute respiratory distress syndrome, and acute kidney injury (AKI) are associated with high in-hospital mortality and long-term adverse health outcomes among survivors. Despite advancements in care, clinical and biological heterogeneity among patients continues to hamper identification of efficacious therapies. Precision medicine offers hope by identifying patient subclasses based on clinical, laboratory, biomarker and 'omic' data and potentially facilitating better alignment of interventions. Within the previous two decades, numerous studies have made strides in identifying gene-expression based endotypes and clinico-biomarker based phenotypes among critically ill patients associated with differential outcomes and responses to treatment. In this state-of-the-art review, we summarize the biological similarities and differences across the various subclassification schemes among critically ill patients. In addition, we highlight current translational gaps, the need for advanced scientific tools, human-relevant disease models, to gain a comprehensive understanding of the molecular mechanisms underlying critical illness subclasses.


Assuntos
Estado Terminal , Sepse , Humanos , Estado Terminal/classificação , Estado Terminal/terapia , Sepse/classificação , Sepse/fisiopatologia , Injúria Renal Aguda/classificação , Injúria Renal Aguda/fisiopatologia , Injúria Renal Aguda/terapia , Síndrome do Desconforto Respiratório/classificação , Síndrome do Desconforto Respiratório/fisiopatologia , Síndrome do Desconforto Respiratório/terapia , Biomarcadores/análise , Medicina de Precisão/métodos
2.
Med Sci (Basel) ; 7(9)2019 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-31480425

RESUMO

Kappa-opioid agonists (KOAs) enhance cardiac performance, as well as reduce infarct size and prevent deleterious cardiac remodeling following myocardial infarction. Additionally, KOAs promote diuresis; however, there has been limited development of KOAs as a class due to the promotion of untoward central nervous system (CNS)-mediated side effects. Our laboratory has developed a peripherally-restricted, orally-active, KOA (JT09) for the treatment of pain and cardiovascular disease. Peripherally-restricted KOAs possess a limited side-effect profile and demonstrate potential in preventing heart failure. The aim of this study was to assess the diuretic activity of lead compound JT09 relative to vehicle control and Tolvaptan through single oral administration to adult male Sprague-Dawley rats. JT09-administered rats demonstrated significantly increased urine output relative to vehicle control. However, the effect persisted for 8 h, whereas Tolvaptan-administered rats demonstrated diuretic activity for 24 h. Relative to Tolvaptan, urine output was significantly reduced in JT09 administered animals at all-time points, suggesting that the overall diuretic effect of JT09 is less profound than Tolvaptan. Additionally, JT09-administered rats demonstrated alterations in clinical chemistry; reduced urine specific gravity; and increased urine pH relative to vehicle control. The following study establishes a preliminary diuretic profile for JT09.

3.
Pharmaceuticals (Basel) ; 12(2)2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31226764

RESUMO

Many original research articles have been published that describe findings and outline areas for the development of kappa-opioid agonists (KOAs) as novel drugs; however, a single review article that summarizes the broad potential for KOAs in drug development does not exist. It is well-established that KOAs demonstrate efficacy in pain attenuation; however, KOAs also have proven to be beneficial in treating a variety of novel but often overlapping conditions including cardiovascular disease, pruritus, nausea, inflammatory diseases, spinal anesthesia, stroke, hypoxic pulmonary hypertension, multiple sclerosis, addiction, and post-traumatic cartilage degeneration. This article summarizes key findings of KOAs and discusses the untapped therapeutic potential of KOAs in the treatment of many human diseases.

4.
PLoS Pathog ; 12(12): e1006085, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27930733

RESUMO

Entamoeba histolytica is an enteric pathogen responsible for amoebic dysentery and liver abscess. It alternates between the host-restricted trophozoite form and the infective environmentally-stable cyst stage. Throughout its lifecycle E. histolytica experiences stress, in part, from host immune pressure. Conversion to cysts is presumed to be a stress-response. In other systems, stress induces phosphorylation of a serine residue on eukaryotic translation initiation factor-2α (eIF2α). This inhibits eIF2α activity resulting in a general decline in protein synthesis. Genomic data reveal that E. histolytica possesses eIF2α (EheIF2α) with a conserved phosphorylatable serine at position 59 (Ser59). Thus, this pathogen may have the machinery for stress-induced translational control. To test this, we exposed cells to different stress conditions and measured the level of total and phospho-EheIF2α. Long-term serum starvation, long-term heat shock, and oxidative stress induced an increase in the level of phospho-EheIF2α, while short-term serum starvation, short-term heat shock, or glucose deprivation did not. Long-term serum starvation also caused a decrease in polyribosome abundance, which is in accordance with the observation that this condition induces phosphorylation of EheIF2α. We generated transgenic cells that overexpress wildtype EheIF2α, a non-phosphorylatable variant of eIF2α in which Ser59 was mutated to alanine (EheIF2α-S59A), or a phosphomimetic variant of eIF2α in which Ser59 was mutated to aspartic acid (EheIF2α-S59D). Consistent with the known functions of eIF2α, cells expressing wildtype or EheIF2α-S59D exhibited increased or decreased translation, respectively. Surprisingly, cells expressing EheIF2α-S59A also exhibited reduced translation. Cells expressing EheIF2α-S59D were more resistant to long-term serum starvation underscoring the significance of EheIF2α phosphorylation in managing stress. Finally, phospho-eIF2α accumulated during encystation in E. invadens, a model encystation system. Together, these data demonstrate that the eIF2α-dependent stress response system is operational in Entamoeba species.


Assuntos
Entamoeba/fisiologia , Fator de Iniciação 2 em Eucariotos/metabolismo , Encistamento de Parasitas/fisiologia , Estresse Fisiológico/fisiologia , Western Blotting , Mutagênese Sítio-Dirigida , Organismos Geneticamente Modificados , Fosforilação , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...