Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Immunol Allergy Clin North Am ; 43(1): 1-15, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36410996

RESUMO

Building an immune system is a monumental task critical to the survival of the fetus and newborn. A functional fetal immune system must complement the maternal immune system in handling in utero infection; abstain from damaging non-self-reactions that would compromise the materno-fetal interface; mobilize in response to infection and equip mucosal tissues for pathogen exposure at birth. There is growing appreciation that immune cells also have noncanonical roles in development and specifically may contribute to tissue morphogenesis. In this review we detail how hematopoietic and lymphoid organs jointly establish cellular constituents of the immune system; how these constituents are organized in 2 mucosal sites-gut and lung-where early life immune function has long-term consequences for health; and how exemplar diseases of prematurity and inborn errors of immunity reveal dominant pathways in prenatal immunity.


Assuntos
Feto , Sistema Imunitário , Recém-Nascido , Gravidez , Feminino , Humanos
2.
BMJ Open Respir Res ; 9(1)2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36207030

RESUMO

BACKGROUND: Cystic fibrosis (CF) is a genetic condition caused by variants in the cystic fibrosis transmembrane conductance regulator (CFTR) gene that primarily impacts the lungs. Treatments historically have been symptomatic to improve airway clearance and treat infection. However, CFTR modulator drugs have recently been developed that target the underlying defect. The triple combination of elexacaftor-tezacaftor-ivacaftor (ETI) was approved in 2020 in England for over 80% of people with CF aged over 12 years and in 2022 extended to those over 6 years. ETI treatment is associated with substantial improvements in lung function. The experience of children with CF starting on ETI or their views regarding future treatments have not been well studied. This study aimed to explore the opinions of children with CF, their parents/carers and healthcare professionals (HCPs) on the impact of ETI, airway clearance techniques (ACTs) and nebulised treatments. METHODS: Semistructured qualitative interviews were performed with 10 children with CF, 7 parents/carers and 10 HCPs. Audio recordings were transcribed and analysed using reflexive thematic analysis. RESULTS: Four main themes were identified: 'Kaftrio changed my life', 'Your entire life is dictated by the CF timetable', 'Simplifying treatment-hopes and fears' and 'Kaftrio is a game-changer' along with several subthemes and an overarching theme of 'I still can't get my head around how three tablets can do what Kaftrio done'. CONCLUSIONS: Despite the highly positive impact of ETI on the health of children with CF some concerns remain about the longer-term outcomes of reducing ACTs or nebulised treatments. ETI has prompted a shift in treatment for many and offers an opportunity to personalise approaches.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Idoso , Aminofenóis , Benzodioxóis , Criança , Óxidos N-Cíclicos , Fibrose Cística/tratamento farmacológico , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Atenção à Saúde , Humanos , Indóis , Mutação , Nebulizadores e Vaporizadores , Pirazóis , Piridinas , Pirrolidinas , Quinolonas
3.
Stem Cell Reports ; 17(7): 1699-1713, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35750043

RESUMO

Conjunctival epithelial cells, which express viral-entry receptors angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine type 2 (TMPRSS2), constitute the largest exposed epithelium of the ocular surface tissue and may represent a relevant viral-entry route. To address this question, we generated an organotypic air-liquid-interface model of conjunctival epithelium, composed of basal, suprabasal, and superficial epithelial cells, and fibroblasts, which could be maintained successfully up to day 75 of differentiation. Using single-cell RNA sequencing (RNA-seq), with complementary imaging and virological assays, we observed that while all conjunctival cell types were permissive to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome expression, a productive infection did not ensue. The early innate immune response to SARS-CoV-2 infection in conjunctival cells was characterised by a robust autocrine and paracrine NF-κB activity, without activation of antiviral interferon signalling. Collectively, these data enrich our understanding of SARS-CoV-2 infection at the human ocular surface, with potential implications for the design of preventive strategies and conjunctival transplantation.


Assuntos
COVID-19 , Células Epiteliais/metabolismo , Humanos , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Receptores Virais/metabolismo , SARS-CoV-2
4.
Pharmgenomics Pers Med ; 15: 91-104, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35153502

RESUMO

Cystic fibrosis (CF) is an autosomal recessive genetic condition that is caused by variants in the cystic fibrosis transmembrane conductance regulator gene. This causes multisystem disease due to dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR) ion channel at the apical surface of epithelia. Until recently, treatment was directed at managing the downstream effects in affected organs, principally improving airway clearance and treating infection in the lungs and improving malabsorption in the gastrointestinal tract. Care delivered by multidisciplinary teams has yielded incremental improvements in outcomes. However, the development of small-molecule CFTR modulator drugs over the last decade has heralded a new era of CF therapeutics. Modulators target the underlying defect and improve CFTR function. Either monotherapy or a combination of modulators is used depending on the specific genotype and class of CFTR disease-causing variants that an individual has. Both ivacaftor and the ivacaftor/tezacaftor/elexacaftor combination have been demonstrated to be associated with clinically very significant benefits in randomised trials and have rapidly been made available as part of standard care in many countries. CFTR modulators represent one of the best examples of precision medicine to date. They are expensive, however, and equity of access to them worldwide remains an issue. Studies and approvals are also ongoing for children under the age of 6 years for ivacaftor/tezacaftor/elexacaftor. Furthermore, no modulators are available for around 10% of the people with CF. In this review, we firstly summarise the genetics, pathophysiology and clinical problems associated with CF. We then discuss the development of CFTR modulators and key clinical trials to support their use along with other potential future therapeutic approaches.

5.
Nat Commun ; 12(1): 7092, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34876592

RESUMO

The nasal epithelium is a plausible entry point for SARS-CoV-2, a site of pathogenesis and transmission, and may initiate the host response to SARS-CoV-2. Antiviral interferon (IFN) responses are critical to outcome of SARS-CoV-2. Yet little is known about the interaction between SARS-CoV-2 and innate immunity in this tissue. Here we apply single-cell RNA sequencing and proteomics to a primary cell model of human nasal epithelium differentiated at air-liquid interface. SARS-CoV-2 demonstrates widespread tropism for nasal epithelial cell types. The host response is dominated by type I and III IFNs and interferon-stimulated gene products. This response is notably delayed in onset relative to viral gene expression and compared to other respiratory viruses. Nevertheless, once established, the paracrine IFN response begins to impact on SARS-CoV-2 replication. When provided prior to infection, recombinant IFNß or IFNλ1 induces an efficient antiviral state that potently restricts SARS-CoV-2 viral replication, preserving epithelial barrier integrity. These data imply that the IFN-I/III response to SARS-CoV-2 initiates in the nasal airway and suggest nasal delivery of recombinant IFNs to be a potential chemoprophylactic strategy.


Assuntos
Células Epiteliais/virologia , Interferon Tipo I/imunologia , Interferons/imunologia , Mucosa Nasal/virologia , SARS-CoV-2/fisiologia , Antivirais/imunologia , Antivirais/farmacologia , COVID-19/imunologia , COVID-19/virologia , Células Cultivadas , Células Epiteliais/citologia , Células Epiteliais/imunologia , Humanos , Imunidade Inata , Cinética , Mucosa Nasal/citologia , Mucosa Nasal/imunologia , SARS-CoV-2/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Tropismo Viral , Replicação Viral/efeitos dos fármacos , Interferon lambda
6.
Lancet ; 397(10290): 2195-2211, 2021 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-34090606

RESUMO

Cystic fibrosis is a monogenic disease considered to affect at least 100 000 people worldwide. Mutations in CFTR, the gene encoding the epithelial ion channel that normally transports chloride and bicarbonate, lead to impaired mucus hydration and clearance. Classical cystic fibrosis is thus characterised by chronic pulmonary infection and inflammation, pancreatic exocrine insufficiency, male infertility, and might include several comorbidities such as cystic fibrosis-related diabetes or cystic fibrosis liver disease. This autosomal recessive disease is diagnosed in many regions following newborn screening, whereas in other regions, diagnosis is based on a group of recognised multiorgan clinical manifestations, raised sweat chloride concentrations, or CFTR mutations. Disease that is less easily diagnosed, and in some cases affecting only one organ, can be seen in the context of gene variants leading to residual protein function. Management strategies, including augmenting mucociliary clearance and aggressively treating infections, have gradually improved life expectancy for people with cystic fibrosis. However, restoration of CFTR function via new small molecule modulator drugs is transforming the disease for many patients. Clinical trial pipelines are actively exploring many other approaches, which will be increasingly needed as survival improves and as the population of adults with cystic fibrosis increases. Here, we present the current understanding of CFTR mutations, protein function, and disease pathophysiology, consider strengths and limitations of current management strategies, and look to the future of multidisciplinary care for those with cystic fibrosis.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística , Gerenciamento Clínico , Terapia Genética , Depuração Mucociliar , Bicarbonatos , Cloretos , Fibrose Cística/genética , Fibrose Cística/fisiopatologia , Insuficiência Pancreática Exócrina/mortalidade , Humanos , Expectativa de Vida , Mutação/genética
7.
J Biol Chem ; 296: 100650, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33839155

RESUMO

Most patients with cystic fibrosis (CF) suffer from acute and chronic pulmonary infections with bacterial pathogens, which often determine their life quality and expectancy. Previous studies have demonstrated a downregulation of the acid ceramidase in CF epithelial cells resulting in an increase of ceramide and a decrease of sphingosine. Sphingosine kills many bacterial pathogens, and the downregulation of sphingosine seems to determine the infection susceptibility of cystic fibrosis mice and patients. It is presently unknown how deficiency of the cystic fibrosis transmembrane conductance regulator (CFTR) connects to a marked downregulation of the acid ceramidase in human and murine CF epithelial cells. Here, we employed quantitative PCR, western blot analysis, and enzyme activity measurements to study the role of IRF8 for acid ceramidase regulation. We report that genetic deficiency or functional inhibition of CFTR/Cftr results in an upregulation of interferon regulatory factor 8 (IRF8) and a concomitant downregulation of acid ceramidase expression with CF and an increase of ceramide and a reduction of sphingosine levels in tracheal and bronchial epithelial cells from both human individuals or mice. CRISPR/Cas9- or siRNA-mediated downregulation of IRF8 prevented changes of acid ceramidase, ceramide, and sphingosine in CF epithelial cells and restored resistance to Pseudomonas aeruginosa infections, which is one of the most important and common pathogens in lung infection of patients with CF. These studies indicate that CFTR deficiency causes a downregulation of acid ceramidase via upregulation of IRF8, which is a central pathway to control infection susceptibility of CF cells.


Assuntos
Ceramidase Ácida/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/microbiologia , Células Epiteliais/microbiologia , Fatores Reguladores de Interferon/metabolismo , Pulmão/microbiologia , Infecções por Pseudomonas/microbiologia , Ceramidase Ácida/genética , Animais , Ceramidas/metabolismo , Fibrose Cística/imunologia , Fibrose Cística/metabolismo , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Fatores Reguladores de Interferon/genética , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Knockout , Infecções por Pseudomonas/genética , Infecções por Pseudomonas/metabolismo , Pseudomonas aeruginosa/isolamento & purificação , Esfingosina/metabolismo
8.
J Cyst Fibros ; 20(5): 737-741, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32950411

RESUMO

Nontuberculous mycobacteria (NTM) infection is of growing concern in cystic fibrosis (CF). UK CF Registry data were analyzed from 2016 to 2018. Prevalence of infection stabilized in the pediatric age-group during this period but remained substantially higher than in 2010. Allergic bronchopulmonary aspergillosis and Pseudomonas aeruginosa infection were associated with NTM infection.


Assuntos
Fibrose Cística/microbiologia , Infecções por Mycobacterium não Tuberculosas/epidemiologia , Infecções por Mycobacterium não Tuberculosas/microbiologia , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Prevalência , Reino Unido/epidemiologia
9.
Am J Physiol Lung Cell Mol Physiol ; 320(2): L288-L300, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33296276

RESUMO

Cystic fibrosis (CF) arises from mutations in the CF transmembrane conductance regulator (CFTR) gene, resulting in progressive and life-limiting respiratory disease. R751L is a rare CFTR mutation that is poorly characterized. Our aims were to describe the clinical and molecular phenotypes associated with R751L. Relevant clinical data were collected from three heterozygote individuals harboring R751L (2 patients with G551D/R751L and 1 with F508del/R751L). Assessment of R751L-CFTR function was made in primary human bronchial epithelial cultures (HBEs) and Xenopus oocytes. Molecular properties of R751L-CFTR were investigated in the presence of known CFTR modulators. Although sweat chloride was elevated in all three patients, the clinical phenotype associated with R751L was mild. Chloride secretion in F508del/R751L HBEs was reduced compared with non-CF HBEs and associated with a reduction in sodium absorption by the epithelial sodium channel (ENaC). However, R751L-CFTR function in Xenopus oocytes, together with folding and cell surface transport of R751L-CFTR, was not different from wild-type CFTR. Overall, R751L-CFTR was associated with reduced sodium chloride absorption but had functional properties similar to wild-type CFTR. This is the first report of R751L-CFTR that combines clinical phenotype with characterization of functional and biological properties of the mutant channel. Our work will build upon existing knowledge of mutations within this region of CFTR and, importantly, inform approaches for clinical management. Elevated sweat chloride and reduced chloride secretion in HBEs may be due to alternative non-CFTR factors, which require further investigation.


Assuntos
Brônquios , Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Células Epiteliais , Mutação de Sentido Incorreto , Cloreto de Sódio/metabolismo , Substituição de Aminoácidos , Animais , Brônquios/metabolismo , Brônquios/patologia , Fibrose Cística/genética , Fibrose Cística/metabolismo , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Humanos , Masculino , Xenopus laevis
10.
J Cyst Fibros ; 20(1): 25-30, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33309057

RESUMO

BACKGROUND: The presence of co-morbidities, including underlying respiratory problems, has been identified as a risk factor for severe COVID-19 disease. Information on the clinical course of SARS-CoV-2 infection in children with cystic fibrosis (CF) is limited, yet vital to provide accurate advice for children with CF, their families, caregivers and clinical teams. METHODS: Cases of SARS-CoV-2 infection in children with CF aged less than 18 years were collated by the CF Registry Global Harmonization Group across 13 countries between 1 February and 7 August 2020. RESULTS: Data on 105 children were collated and analysed. Median age of cases was ten years (interquartile range 6-15), 54% were male and median percentage predicted forced expiratory volume in one second was 94% (interquartile range 79-104). The majority (71%) of children were managed in the community during their COVID-19 illness. Out of 24 children admitted to hospital, six required supplementary oxygen and two non-invasive ventilation. Around half were prescribed antibiotics, five children received antiviral treatments, four azithromycin and one additional corticosteroids. Children that were hospitalised had lower lung function and reduced body mass index Z-scores. One child died six weeks after testing positive for SARS-CoV-2 following a deterioration that was not attributed to COVID-19 disease. CONCLUSIONS: SARS-CoV-2 infection in children with CF is usually associated with a mild illness in those who do not have pre-existing severe lung disease.


Assuntos
COVID-19/complicações , COVID-19/terapia , Fibrose Cística/complicações , Fibrose Cística/terapia , Adolescente , COVID-19/epidemiologia , Criança , Fibrose Cística/epidemiologia , Progressão da Doença , Feminino , Humanos , Masculino , Prognóstico , Fatores de Risco , SARS-CoV-2
11.
Am J Respir Crit Care Med ; 202(8): 1133-1145, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32569477

RESUMO

Rationale: In cystic fibrosis the major cause of morbidity and mortality is lung disease characterized by inflammation and infection. The influence of sphingolipid metabolism is poorly understood with a lack of studies using human airway model systems.Objectives: To investigate sphingolipid metabolism in cystic fibrosis and the effects of treatment with recombinant human acid ceramidase on inflammation and infection.Methods: Sphingolipids were measured using mass spectrometry in fully differentiated cultures of primary human airway epithelial cells and cocultures with Pseudomonas aeruginosa. In situ activity assays, Western blotting, and quantitative PCR were used to investigate function and expression of ceramidase and sphingomyelinase. Effects of treatment with recombinant human acid ceramidase on sphingolipid profile and inflammatory mediator production were assessed in cell cultures and murine models.Measurements and Main Results: Ceramide is increased in cystic fibrosis airway epithelium owing to differential function of enzymes regulating sphingolipid metabolism. Sphingosine, a metabolite of ceramide with antimicrobial properties, is not upregulated in response to P. aeruginosa by cystic fibrosis airway epithelia. Tumor necrosis factor receptor 1 is increased in cystic fibrosis epithelia and activates NF-κB signaling, generating inflammation. Treatment with recombinant human acid ceramidase, to decrease ceramide, reduced both inflammatory mediator production and susceptibility to infection.Conclusions: Sphingolipid metabolism is altered in airway epithelial cells cultured from people with cystic fibrosis. Treatment with recombinant acid ceramidase ameliorates the two pivotal features of cystic fibrosis lung disease, inflammation and infection, and thus represents a therapeutic approach worthy of further exploration.


Assuntos
Ceramidase Ácida/metabolismo , Ceramidase Ácida/farmacologia , Fibrose Cística/tratamento farmacológico , Pneumonia/diagnóstico , Infecções por Pseudomonas/diagnóstico , Esfingolipídeos/metabolismo , Adolescente , Células Epiteliais Alveolares/efeitos dos fármacos , Animais , Western Blotting/métodos , Células Cultivadas , Criança , Fibrose Cística/diagnóstico , Humanos , Inflamação/diagnóstico , Inflamação/tratamento farmacológico , Espectrometria de Massas/métodos , Camundongos , Pneumonia/tratamento farmacológico , Reação em Cadeia da Polimerase/métodos , Infecções por Pseudomonas/tratamento farmacológico , Sensibilidade e Especificidade , Índice de Gravidade de Doença , Adulto Jovem
12.
J Vis Exp ; (148)2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31259916

RESUMO

In recent years, the importance of mucosal surface pH in the airways has been highlighted by its ability to regulate airway surface liquid (ASL) hydration, mucus viscosity and activity of antimicrobial peptides, key parameters involved in innate defense of the lungs. This is of primary relevance in the field of chronic respiratory diseases such as cystic fibrosis (CF) where these parameters are dysregulated. While different groups have studied ASL pH both in vivo and in vitro, their methods report a relatively wide range of ASL pH values and even contradictory findings regarding any pH differences between non-CF and CF cells. Furthermore, their protocols do not always provide enough details in order to ensure reproducibility, most are low throughput and require expensive equipment or specialized knowledge to implement, making them difficult to establish in most labs. Here we describe a semi-automated fluorescent plate reader assay that enables the real-time measurement of ASL pH under thin film conditions that more closely resemble the in vivo situation. This technique allows for stable measurements for many hours from multiple airway cultures simultaneously and, importantly, dynamic changes in ASL pH in response to agonists and inhibitors can be monitored. To achieve this, the ASL of fully differentiated primary human airway epithelial cells (hAECs) are stained overnight with a pH-sensitive dye in order to allow for the reabsorption of the excess fluid to ensure thin film conditions. After fluorescence is monitored in the presence or absence of agonists, pH calibration is performed in situ to correct for volume and dye concentration. The method described provides the required controls to make stable and reproducible ASL pH measurements, which ultimately could be used as a drug discovery platform for personalized medicine, as well as adapted to other epithelial tissues and experimental conditions, such as inflammatory and/or host-pathogen models.


Assuntos
Fibrose Cística/diagnóstico , Células Epiteliais/metabolismo , Mucosa Respiratória/metabolismo , Células Cultivadas , Fibrose Cística/patologia , Humanos , Concentração de Íons de Hidrogênio , Reprodutibilidade dos Testes
14.
Expert Opin Pharmacother ; 18(13): 1363-1371, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28730885

RESUMO

INTRODUCTION: Cystic fibrosis (CF) is one of the most common genetically-acquired life-limiting conditions worldwide. The underlying defect is dysfunction of the cystic fibrosis transmembrane-conductance regulator (CFTR) which leads to progressive lung disease and other multi-system effects. Around 10% of people with CF have a class I nonsense mutation that leads to production of shortened CFTR due to a premature termination codon (PTC). Areas covered: We discuss the discovery of the small-molecule drug ataluren, which in vitro has been shown to allow read-through of PTCs and facilitate synthesis of full-length protein. We review clinical studies that have been performed involving ataluren in CF. Early-phase short-term cross-over studies showed improvement in nasal potential difference. A follow-up phase III randomised controlled trial did not show a significant difference for the primary outcome of lung function, however a post-hoc analysis suggested possible benefit in patients not receiving tobramycin. A further randomised controlled trial in patients not receiving tobramycin has been reported as showing no benefit but has not yet been published in full peer-reviewed form. Expert opinion: A small-molecule approach to facilitate read-through of PTCs in nonsense mutations makes intuitive sense. However, at present there is no high-quality evidence of clinical efficacy for ataluren in people with CF.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/biossíntese , Fibrose Cística/tratamento farmacológico , Descoberta de Drogas , Oxidiazóis/uso terapêutico , Códon sem Sentido/genética , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Humanos , Oxidiazóis/administração & dosagem , Oxidiazóis/farmacocinética , Ensaios Clínicos Controlados Aleatórios como Assunto , Resultado do Tratamento
15.
Pflugers Arch ; 469(9): 1073-1091, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28455748

RESUMO

Transepithelial bicarbonate secretion by human airway submucosal glands and surface epithelial cells is crucial to maintain the pH-sensitive innate defence mechanisms of the lung. cAMP agonists stimulate HCO3- secretion via coordinated increases in basolateral HCO3- influx and accumulation, as well as CFTR-dependent HCO3- efflux at the luminal membrane of airway epithelial cells. Here, we investigated the regulation of a basolateral located, DIDS-sensitive, Cl-/HCO3- exchanger, anion exchanger 2 (AE2; SLC4A2) which is postulated to act as an acid loader, and therefore potential regulator of HCO3- secretion, in human airway epithelial cells. Using intracellular pH measurements performed on Calu-3 cells, we demonstrate that the activity of the basolateral Cl-/HCO3- exchanger was significantly downregulated by cAMP agonists, via a PKA-independent mechanism and also required Ca2+ and calmodulin under resting conditions. AE2 contains potential phosphorylation sites by a calmodulin substrate, protein kinase CK2, and we demonstrated that AE2 activity was reduced in the presence of CK2 inhibition. Moreover, CK2 inhibition abolished the activity of AE2 in primary human nasal epithelia. Studies performed on mouse AE2 transfected into HEK-293T cells confirmed almost identical Ca2+/calmodulin and CK2 regulation to that observed in Calu-3 and primary human nasal cells. Furthermore, mouse AE2 activity was reduced by genetic knockout of CK2, an effect which was rescued by exogenous CK2 expression. Together, these findings are the first to demonstrate that CK2 is a key regulator of Cl--dependent HCO3- export at the serosal membrane of human airway epithelial cells.


Assuntos
Bicarbonatos/metabolismo , Caseína Quinase II/metabolismo , Antiportadores de Cloreto-Bicarbonato/metabolismo , Cloretos/metabolismo , Mucosa Nasal/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Membrana Celular/metabolismo , AMP Cíclico/metabolismo , Células Epiteliais/metabolismo , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Camundongos
17.
Open Heart ; 3(2): e000394, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27547426

RESUMO

OBJECTIVES: To address the limited long-term outcome data for catheter ablation (CA) of persistent atrial fibrillation (PeAF), we analysed consecutive ablations performed at our centre from 1 January 2008 to 31 December 2010 and followed patients prospectively until January 2014. METHODS: Both arrhythmia recurrence and symptom relief were assessed. Follow-up data were collected from hospital records, supplemented by data from general practitioners and referring hospitals. At the end of the follow-up period, all patients were contacted by phone to determine their up-to-date clinical condition. RESULTS: 188 consecutive patients with PeAF (157 male, mean age 57.3±9.7 years, 20% with long-standing PeAF) underwent a mean of 1.75 procedures (range 1-4). Telephone follow-up was achieved for 77% of surviving patients. Over a mean follow-up of 46±16 months (range 4-72), 139 (75%) patients experienced arrhythmia recurrence after a single procedure and 90 (48%) after their final procedure. Median time to first recurrence was 210 days (range 91-1850). 71% of recurrences were within the first year following ablation and 91% within 2 years. At final follow-up, 82% of patients reported symptomatic improvement. 7 (2.3%) major complications occurred, and there was no procedure-related death or stroke. CONCLUSIONS: CA for PeAF is safe with a low rate of complications. Over a follow-up period of up to 6 years, a large majority of patients experience significant symptomatic improvement but recurrence after the initial procedure is the norm rather than the exception. 2 years' follow-up is sufficient to observe 90% of AF recurrences, but recurrence can occur even after 5 years' remission.

19.
Thorax ; 71(3): 284-7, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26719229

RESUMO

Cystic fibrosis (CF) is a life-limiting disease characterised by recurrent respiratory infections, inflammation and lung damage. The volume and composition of the airway surface liquid (ASL) are important in maintaining ciliary function, mucociliary clearance and antimicrobial properties of the airway. In CF, these homeostatic mechanisms are impaired, leading to a dehydrated and acidic ASL. ASL volume depletion in CF is secondary to defective anion transport by the abnormal cystic fibrosis transmembrane conductance regulator protein (CFTR). Abnormal CFTR mediated bicarbonate transport creates an unfavourable, acidic environment, which impairs antimicrobial function and alters mucus properties and clearance. These disease mechanisms create a disordered airway milieu, consisting of thick mucopurulent secretions and chronic bacterial infection. In addition to CFTR, there are additional ion channels and transporters in the apical airway epithelium that play a role in maintaining ASL homeostasis. These include the epithelial sodium channel (ENaC), the solute carrier 26A (SLC26A) family of anion exchangers, and calcium-activated chloride channels. In this review we discuss how the ASL is abnormal in CF and how targeting these alternative channels and transporters could provide an attractive therapeutic strategy to correct the underlying ASL abnormalities evident in CF.


Assuntos
Bicarbonatos/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística , Gerenciamento Clínico , Homeostase/fisiologia , Mucosa Respiratória/metabolismo , Fibrose Cística/metabolismo , Fibrose Cística/fisiopatologia , Fibrose Cística/terapia , Humanos , Transporte de Íons , Depuração Mucociliar/fisiologia
20.
Genome Med ; 7: 101, 2015 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-26403534

RESUMO

Cystic fibrosis is the most common genetically determined, life-limiting disorder in populations of European ancestry. The genetic basis of cystic fibrosis is well established to be mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene that codes for an apical membrane chloride channel principally expressed by epithelial cells. Conventional approaches to cystic fibrosis care involve a heavy daily burden of supportive treatments to combat lung infection, help clear airway secretions and maintain nutritional status. In 2012, a new era of precision medicine in cystic fibrosis therapeutics began with the licensing of a small molecule, ivacaftor, which successfully targets the underlying defect and improves CFTR function in a subgroup of patients in a genotype-specific manner. Here, we review the three main targeted approaches that have been adopted to improve CFTR function: potentiators, which recover the function of CFTR at the apical surface of epithelial cells that is disrupted in class III and IV genetic mutations; correctors, which improve intracellular processing of CFTR, increasing surface expression, in class II mutations; and production correctors or read-through agents, which promote transcription of CFTR in class I mutations. The further development of such approaches offers great promise for future therapeutic strategies in cystic fibrosis.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/tratamento farmacológico , Aminofenóis/uso terapêutico , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Humanos , Terapia de Alvo Molecular , Quinolonas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...