Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(14)2022 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-35890838

RESUMO

Human emotions are variant with time, non-stationary, complex in nature, and are invoked as a result of human reactions during our daily lives. Continuously detecting human emotions from one-dimensional EEG signals is an arduous task. This paper proposes an advanced signal processing mechanism for emotion detection from EEG signals using continuous wavelet transform. The space and time components of the raw EEG signals are converted into 2D spectrograms followed by feature extraction. A hybrid spatio-temporal deep neural network is implemented to extract rich features. A differential-based entropy feature selection technique adaptively differentiates features based on entropy, based on low and high information regions. Bag of Deep Features (BoDF) is applied to create clusters of similar features and computes the features vocabularies for reduction of feature dimensionality. Extensive experiments are performed on the SEED dataset, which shows the significance of the proposed method compared to state-of-the-art methods. Specifically, the proposed model achieved 96.7%, 96.2%, 95.8%, and 95.3% accuracy with the SJTU SEED dataset, for SVM, ensemble, tree, and KNN classifiers, respectively.


Assuntos
Eletroencefalografia , Emoções , Análise por Conglomerados , Eletroencefalografia/métodos , Humanos , Processamento de Sinais Assistido por Computador , Análise de Ondaletas
2.
Sensors (Basel) ; 20(23)2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33260864

RESUMO

Object detection is an important aspect for autonomous driving vehicles (ADV), which may comprise of a machine learning model that detects a range of classes. As the deployment of ADV widens globally, the variety of objects to be detected may increase beyond the designated range of classes. Continual learning for object detection essentially ensure a robust adaptation of a model to detect additional classes on the fly. This study proposes a novel continual learning method for object detection that learns new object class(es) along with cumulative memory of classes from prior learning rounds to avoid any catastrophic forgetting. The results of PASCAL VOC 2007 have suggested that the proposed ER method obtains 4.3% of mAP drop compared against the all-classes learning, which is the lowest amongst other prior arts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...