Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38083723

RESUMO

Cochlear implants (CI) have restored hearing to many deaf patients. It is the most successful neuroprosthetic in the field. However, in past decades technical improvements have plateaued and the market has solidified among 3 manufacturers. Proprietary software, and know-how are some of the barriers to innovation and disruption in CIs. In this paper we propose an open data communication protocol for cochlear implants that supports multipolar stimulation, accommodates an expandable number of channels, and minimizes the transmission of redundant information. We also present a method for implementing multipolar stimulation in single supply stimulators with a bridge-type switch matrix through pulse-polarity modulation. This combines the advantages of lower voltage (lower power) operation with more targeted stimulation.Clinical Relevance- In addition to enabling the development of new tools for research and clinical deployment, the presented data communication protocol will promote clinical research in more advanced auditory coding strategies.


Assuntos
Implante Coclear , Implantes Cocleares , Humanos , Implante Coclear/métodos , Audição , Testes Auditivos , Software
2.
Ann Work Expo Health ; 65(8): 979-987, 2021 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-33999132

RESUMO

Reuse of filtering facepiece respirators (FFRs, commonly referred to as N95s) normally meant for single use has become common in healthcare facilities due to shortages caused by the COVID-19 pandemic. Here, we report that murine hepatitis coronavirus initially seeded on FFR filter material is inactivated (6 order of magnitude reduction as measured by median tissue culture infective dose, TCID50) after dry heating at 75°C for 30 min. We also find that the quantitative fit of FFRs after heat treatment at this temperature, under dry conditions or at 90% relative humidity, is not affected by single or 10 heating cycles. Previous studies have reported that the filtration efficiency of FFRs is not negatively impacted by these heating conditions. These results suggest that thermal inactivation of coronaviruses is a potentially rapid and widely deployable method to reuse N95 FFRs in emergency situations where reusing FFRs is a necessity and broad-spectrum sterilization is unavailable. However, we also observe that a radiative heat source (e.g. an exposed heating element) results in rapid qualitative degradation of the FFR. Finally, we discuss differences in the results reported here and other recent studies investigating heat as a means to recycle FFRs. These differences suggest that while our repeated decontamination cycles do not affect FFR fit, overall wear time and the number of donning/doffing cycles are important factors that likely degrade FFR fit and must be investigated further.


Assuntos
COVID-19 , Exposição Ocupacional , Animais , Temperatura Alta , Humanos , Camundongos , Respiradores N95 , Pandemias , SARS-CoV-2
3.
Mater Lett ; 2852021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33716365

RESUMO

There has been a growing interest in optical neural interfaces which is driven by the need for improvements in spatial precision, real-time monitoring, and reduced invasiveness. Here, we present unique microfabrication and packaging techniques to build implantable optoelectronics with high precision and spatial complexity. Material characterization of our hybrid polymers shows minimal in vitro degradation, greater flexibility, and lowest optical loss (4.04-4.4 dB/cm at 670 nm) among other polymers reported in prior studies. We use the developed methods to build Lawrence Livermore National Laboratory's (LLNL's) first ultra-compact, lightweight (0.38 g), scalable and minimally invasive thin-film optoelectronic neural implant that can be used for chronic studies of brain activities. The paper concludes by summarizing the progress to date and discussing future opportunities for flexible optoelectronic interfaces in next generation clinical applications.

4.
Artigo em Inglês | MEDLINE | ID: mdl-35211701

RESUMO

Neural interfaces with increasing channel counts require a scalable means of testing. While multiplexed potentiostats have long been the solution to this problem, most have been dedicated to one specific probe design or potentiostat, limited in the electrochemical techniques available, inordinately expensive, or they support multiplexing of too few channels. We present the design of an automated multiplexed potentiostat system that addresses these limitations-it is easily generalizable to any probe and potentiostat, supports any electrochemical technique available with the potentiostat, is low-cost, and can readily be expanded to hundreds of channels with support for multiple simultaneous potentiostats. This paper discusses the design philosophy and architecture of our 512-channel, 4-potentiostat system before demonstrating functionality with electrochemical impedance spectroscopy data, cyclic voltammetry curves, and an example of electrochemical surface modification, all on functional implantable microelectrode arrays currently being used for in vivo electrophysiological studies. Finally, we discuss the limitations to some sensitive or high-frequency impedance measurements due to reactive parasitics.

5.
IEEE Trans Biomed Eng ; 63(1): 111-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26087481

RESUMO

OBJECTIVE: Subcellular-sized chronically implanted recording electrodes have demonstrated significant improvement in single unit (SU) yield over larger recording probes. Additional work expands on this initial success by combining the subcellular fiber-like lattice structures with the design space versatility of silicon microfabrication to further improve the signal-to-noise ratio, density of electrodes, and stability of recorded units over months to years. However, ultrasmall microelectrodes present very high impedance, which must be lowered for SU recordings. While poly(3,4-ethylenedioxythiophene) (PEDOT) doped with polystyrene sulfonate (PSS) coating have demonstrated great success in acute to early-chronic studies for lowering the electrode impedance, concern exists over long-term stability. Here, we demonstrate a new blend of PEDOT doped with carboxyl functionalized multiwalled carbon nanotubes (CNTs), which shows dramatic improvement over the traditional PEDOT/PSS formula. METHODS: Lattice style subcellular electrode arrays were fabricated using previously established method. PEDOT was polymerized with carboxylic acid functionalized carbon nanotubes onto high-impedance (8.0 ± 0.1 MΩ: M ± S.E.) 250-µm(2) gold recording sites. RESULTS: PEDOT/CNT-coated subcellular electrodes demonstrated significant improvement in chronic spike recording stability over four months compared to PEDOT/PSS recording sites. CONCLUSION: These results demonstrate great promise for subcellular-sized recording and stimulation electrodes and long-term stability. SIGNIFICANCE: This project uses leading-edge biomaterials to develop chronic neural probes that are small (subcellular) with excellent electrical properties for stable long-term recordings. High-density ultrasmall electrodes combined with advanced electrode surface modification are likely to make significant contributions to the development of long-term (permanent), high quality, and selective neural interfaces.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/química , Nanotubos de Carbono/química , Próteses Neurais , Neurofisiologia/métodos , Polímeros/química , Animais , Eletrodos Implantados , Desenho de Equipamento , Masculino , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...