Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 74(6): 983-1000, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27714411

RESUMO

In the past decades, the cardiovascular community has laid out the fundamental signaling cascades that become awry in the cardiomyocyte during the process of pathologic cardiac remodeling. These pathways are initiated at the cell membrane and work their way to the nucleus to mediate gene expression. Complexity is multiplied as the cardiomyocyte is subjected to cross talk with other cells as well as a barrage of extracellular stimuli and mechanical stresses. In this review, we summarize the signaling cascades that play key roles in cardiac function and then we proceed to describe emerging concepts of how the cardiomyocyte senses the mechanical and environmental stimuli to transition to the deleterious genetic program that defines pathologic cardiac remodeling. As a highlighting example of these processes, we illustrate the transition from a compensated hypertrophied myocardium to a decompensated failing myocardium, which is clinically manifested as decompensated heart failure.


Assuntos
Miócitos Cardíacos/metabolismo , Estresse Fisiológico , Remodelação Ventricular , Animais , Cardiomegalia/complicações , Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Humanos , Miócitos Cardíacos/patologia , Transdução de Sinais
2.
J Mol Cell Cardiol ; 89(Pt B): 223-31, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26542797

RESUMO

In the infarcted myocardium, necrotic cardiomyocytes activate innate immune pathways, stimulating pro-inflammatory signaling cascades. Although inflammation plays an important role in clearance of the infarct from dead cells and matrix debris, repair of the infarcted heart requires timely activation of signals that negatively regulate the innate immune response, limiting inflammatory injury. We have previously demonstrated that Interleukin receptor-associated kinase (IRAK)-M, a member of the IRAK family that suppresses toll-like receptor/interleukin-1 signaling, is upregulated in the infarcted heart in both macrophages and fibroblasts, and restrains pro-inflammatory activation attenuating adverse remodeling. Although IRAK-M is known to suppress inflammatory activation of macrophages, its role in fibroblasts remains unknown. Our current investigation examines the effects of IRAK-M on fibroblast phenotype and function. In vitro, IRAK-M null cardiac fibroblasts have impaired capacity to contract free-floating collagen pads. IRAK-M loss reduces transforming growth factor (TGF)-ß-mediated α-smooth muscle actin (α-SMA) expression. IRAK-M deficient cardiac fibroblasts exhibit a modest reduction in TGF-ß-stimulated Smad activation and increased expression of the α-SMA repressor, Y-box binding protein (YB)-1. In a model of non-reperfused myocardial infarction, IRAK-M absence does not affect collagen content and myofibroblast density in the infarcted and remodeling myocardium, but increases YB-1 levels and is associated with attenuated α-SMA expression in isolated infarct myofibroblasts. Our findings suggest that, in addition to its role in restraining inflammation following reperfused infarction, IRAK-M may also contribute to myofibroblast conversion.


Assuntos
Quinases Associadas a Receptores de Interleucina-1/metabolismo , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/patologia , Miofibroblastos/enzimologia , Miofibroblastos/patologia , Animais , Contagem de Células , Separação Celular , Tamanho Celular/efeitos dos fármacos , Transdiferenciação Celular/efeitos dos fármacos , Colágeno/metabolismo , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Quinases Associadas a Receptores de Interleucina-1/deficiência , Camundongos Endogâmicos C57BL , Camundongos Knockout , Contração Miocárdica/efeitos dos fármacos , Infarto do Miocárdio/fisiopatologia , Miofibroblastos/efeitos dos fármacos , Perfusão , Fenótipo , Fosforilação/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Proteína 1 de Ligação a Y-Box/metabolismo
3.
Am J Physiol Heart Circ Physiol ; 307(8): H1233-42, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25128167

RESUMO

Regulatory T cells (Tregs) play a pivotal role in suppressing immune responses regulating behavior and gene expression in effector T cells, macrophages, and dendritic cells. Tregs infiltrate the infarcted myocardium; however, their role the inflammatory and reparative response after myocardial infarction remains poorly understood. We used FoxP3(EGFP) reporter mice to study Treg trafficking in the infarcted heart and examined the effects of Treg depletion on postinfarction remodeling using an anti-CD25 antibody. Moreover, we investigated the in vitro effects of Tregs on cardiac fibroblast phenotype and function. Low numbers of Tregs infiltrated the infarcted myocardium after 24-72 h of reperfusion. Treg depletion had no significant effects on cardiac dysfunction and scar size after reperfused myocardial infarction but accelerated ventricular dilation and accentuated apical remodeling. Enhanced myocardial dilation in Treg-depleted animals was associated with increased expression of chemokine (C-C motif) ligand 2 and accentuated macrophage infiltration. In vitro, Tregs modulated the cardiac fibroblast phenotype, reducing expression of α-smooth muscle actin, decreasing expression of matrix metalloproteinase-3, and attenuating contraction of fibroblast-populated collagen pads. Our findings suggest that endogenous Tregs have modest effects on the inflammatory and reparative response after myocardial infarction. However, the anti-inflammatory and matrix-preserving properties of Tregs may suggest a role for Treg-based cell therapy in the attenuation of adverse postinfarction remodeling.


Assuntos
Movimento Celular , Contração Miocárdica , Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/metabolismo , Miofibroblastos/metabolismo , Fenótipo , Linfócitos T Reguladores/metabolismo , Actinas/genética , Actinas/metabolismo , Animais , Células Cultivadas , Quimiocina CCL3/genética , Quimiocina CCL3/metabolismo , Colágeno/genética , Colágeno/metabolismo , Metaloproteinase 3 da Matriz/genética , Metaloproteinase 3 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miocárdio/patologia , Miofibroblastos/fisiologia , Linfócitos T Reguladores/fisiologia , Remodelação Ventricular
4.
J Cell Biochem ; 102(4): 1021-35, 2007 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-17455211

RESUMO

The retinoic acid receptors (RARs) are ligand-dependent transcription factors that play critical roles in cell differentiation, embryonic development, and tumor suppression. RAR transcriptional activities are mediated by a growing family of nuclear receptor (NR) coregulators. Here we report the cloning and characterization of a novel protein RIF1 (receptor interacting factor) that interacts with RARalpha in vivo and in vitro. RIF1 encodes a novel 739 amino acid protein that is ubiquitously expressed in a variety of tissues and cell lines. GST-pull down assays show that RIF1 also interacts with a number of other NRs. The interaction domain of RIF1 for RARalpha is located at the C-terminal region of RIF1, between amino acids 512 and 674. RIF1 is localized exclusively in the cell nucleus and specifically to the nuclear matrix. Mutation of the nuclear localization signal abolishes this nuclear localization and causes RIF1 to appear in the cytoplasm. Co-transfection of RIF1 with RAR causes RAR to localize to the nuclear matrix. RIF1 contains a strong transcriptional repression domain that robustly inhibits ligand-dependent transcriptional activation by RARalpha. This domain is located to the distal C-terminal 100 amino acids, distinct from the RARalpha-interaction and nuclear matrix-targeting domains. The transcriptional repression activity of RIF1 is mediated at least in part through direct recruitment of histone deacetylases. This study identifies RIF1 as a novel nuclear matrix transcription repressor, and suggests a potential role of RIF1 that regulates NR transcriptional activity.


Assuntos
Matriz Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Receptores do Ácido Retinoico/metabolismo , Proteínas Repressoras/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Clonagem Molecular , Humanos , Sinais de Localização Nuclear/genética , Correpressor 1 de Receptor Nuclear , Receptor alfa de Ácido Retinoico , Transcrição Gênica
5.
Proc Natl Acad Sci U S A ; 104(10): 4065-70, 2007 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-17360478

RESUMO

Abnormal proliferation of vascular smooth muscle cells (VSMCs) constitutes a key event in atherosclerosis, neointimal hyperplasia, and the response to vascular injury. Estrogen receptor alpha (ERalpha) mediates the protective effects of estrogen in injured blood vessels and regulates ligand-dependent gene expression in vascular cells. However, the molecular mechanisms mediating ERalpha-dependent VSMC gene expression and VSMC proliferation after vascular injury are not well defined. Here, we report that the ER coactivator steroid receptor coactivator 3 (SRC3) is also a coactivator for the major VSMC transcription factor myocardin, which is required for VSMC differentiation to the nonproliferative, contractile state. The N terminus of SRC3, which contains a basic helix-loop-helix/Per-ARNT-Sim protein-protein interaction domain, binds the C-terminal activation domain of myocardin and enhances myocardin-mediated transcriptional activation of VSMC-specific, CArG-containing promoters, including the VSMC-specific genes SM22 and myosin heavy chain. Suppression of endogenous SRC3 expression by specific small interfering RNA attenuates myocardin transcriptional activation in cultured cells. The SRC3-myocardin interaction identifies a site of convergence for nuclear hormone receptor-mediated and VSMC-specific gene regulation and suggests a possible mechanism for the vascular protective effects of estrogen on vascular injury.


Assuntos
Regulação da Expressão Gênica , Histona Acetiltransferases/metabolismo , Proteínas Nucleares/metabolismo , Transativadores/metabolismo , Transcrição Gênica , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Células Cultivadas , Receptor alfa de Estrogênio/metabolismo , Estrogênios/metabolismo , Humanos , Ligantes , Músculo Liso Vascular/citologia , Proteínas Nucleares/química , Coativador 3 de Receptor Nuclear , Ligação Proteica , Distribuição Tecidual , Transativadores/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA