Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 8: e8893, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32296608

RESUMO

BACKGROUND: Dietary fiber, including inulin, promotes health via fermentation products, such as short-chain fatty acids (SCFAs), produced from the fiber by gut microbiota. SCFAs exert positive physiological effects on energy metabolism, gut immunity, and the nervous system. Most of the commercial inulin is extracted from plant sources such as chicory roots, but it can also be enzymatically synthesized from sucrose using inulin producing enzymes. Studies conducted on rodents fed with a cafeteria diet have suggested that while increasing plasma propionic acid, synthetic inulin modulates glucose and lipid metabolism in the same manner as natural inulin. Therefore, this study aimed to determine the effects of a synthetic inulin, Fuji FF, on energy metabolism, fecal SCFA production, and microbiota profiles in mice fed with a high-fat/high-sucrose diet. METHODS: Three-week-old male C57BL/6J mice were fed a high-fat/high-sucrose diet containing cellulose or Fuji FF for 12 weeks, and the effects on energy metabolism, SCFA production, and microbiota profiles were evaluated. RESULTS: Body weight gain was inhibited by Fuji FF supplementation in high-fat/high-sucrose diet-fed C57BL/6J mice by reducing white adipose tissue weight while increasing energy expenditure, compared with the mice supplemented with cellulose. Fuji FF also elevated levels of acetic, propionic and butyric acids in mouse feces and increased plasma propionic acid levels in mice. Moreover, 16S rRNA gene amplicon sequencing of fecal samples revealed an elevated abundance of Bacteroidetes and a reduced abundance of Firmicutes at the phylum level in mice supplemented with Fuji FF compared to those supplemented with cellulose. Fuji FF also resulted in abundance of the family Bacteroidales S24-7 and reduction of Desulfovibrionaceae in the feces. CONCLUSION: Long term consumption of Fuji FF improved the gut environment in mice by altering the composition of the microbiota and increasing SCFA production, which might be associated with its anti-obesity effects.

2.
Korean J Physiol Pharmacol ; 20(4): 367-78, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27382353

RESUMO

Recently, it was reported that the role of mitochondria-reactive oxygen species (ROS) generating pathway in cisplatin-induced apoptosis is remarkable. Since a variety of molecules are involved in the pathway, a comprehensive approach to delineate the biological interactions of the molecules is required. However, quantitative modeling of the mitochondria-ROS generating pathway based on experiment and systemic analysis using the model have not been attempted so far. Thus, we conducted experiments to measure the concentration changes of critical molecules associated with mitochondrial apoptosis in both human mesothelioma H2052 and their ρ(0) cells lacking mitochondrial DNA (mtDNA). Based on the experiments, a novel mathematical model that can represent the essential dynamics of the mitochondrial apoptotic pathway induced by cisplatin was developed. The kinetic parameter values of the mathematical model were estimated from the experimental data. Then, we have investigated the dynamical properties of this model and predicted the apoptosis levels for various concentrations of cisplatin beyond the range of experiments. From parametric perturbation analysis, we further found that apoptosis will reach its saturation level beyond a certain critical cisplatin concentration.

3.
J Pharmacol Exp Ther ; 337(3): 838-45, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21421738

RESUMO

Although chemotherapy is an important method for the treatment of patients with cancer, its efficacy is limited because of different sensitivities of tumor cells to anticancer agents and/or side effects on normal tissues. The present work demonstrates that mitochondria play a crucial role in the apoptosis of cancer cells induced by anticancer agents that interact with DNA but not with the cytoskeleton. Agents that interact with DNA selectively enhanced generation of reactive oxygen species (ROS) in mitochondria, released cytochrome c, and activated caspase-9 and caspase-3 to induce apoptosis of mesothelioma H2052 cells but not their ρ(0) cells, which lack mitochondrial DNA (mtDNA). The sensitivity of a variety of cells to the agents showed positive correlation with the amounts of their mitochondria. In contrast, agents that selectively affect the cytoskeleton activated caspase-8 and caspase-3 and equally induced apoptosis of both H2052 and their ρ(0) cells by a mitochondria-independent mechanism. The results suggest that mtDNA is a potential target for the anticancer agents that interact with DNA to induce ROS-dependent apoptosis of cancer cells, whereas agents that affect the cytoskeleton induce cell death by a mitochondria- and ROS-independent mechanism. The present observation is important for the selection of medicine for chemotherapy of patients with cancer.


Assuntos
Antineoplásicos/farmacologia , Apoptose , Citoesqueleto/efeitos dos fármacos , DNA Mitocondrial/metabolismo , DNA/metabolismo , Mesotelioma/tratamento farmacológico , Mitocôndrias/metabolismo , Caspases/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Citocromos c/metabolismo , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mesotelioma/metabolismo , Mesotelioma/patologia , Mitocôndrias/efeitos dos fármacos , Terapia de Alvo Molecular , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...