Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 26(7)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33915775

RESUMO

Although the anti-tumor and anti-infective properties of ß-glucans have been well-discussed, their role in bone metabolism has not been reviewed so far. This review discusses the biological effects of ß-glucans on bone metabolisms, especially on bone-resorbing osteoclasts, which are differentiated from hematopoietic precursors. Multiple immunoreceptors that can recognize ß-glucans were reported to be expressed in osteoclast precursors. Coordinated co-stimulatory signals mediated by these immunoreceptors are important for the regulation of osteoclastogenesis and bone remodeling. Curdlan from the bacterium Alcaligenes faecalis negatively regulates osteoclast differentiation in vitro by affecting both the osteoclast precursors and osteoclast-supporting cells. We also showed that laminarin, lichenan, and glucan from baker's yeast, as well as ß-1,3-glucan from Euglema gracilisas, inhibit the osteoclast formation in bone marrow cells. Consistent with these findings, systemic and local administration of ß-glucan derived from Aureobasidium pullulans and Saccharomyces cerevisiae suppressed bone resorption in vivo. However, zymosan derived from S. cerevisiae stimulated the bone resorption activity and is widely used to induce arthritis in animal models. Additional research concerning the relationship between the molecular structure of ß-glucan and its effect on osteoclastic bone resorption will be beneficial for the development of novel treatment strategies for bone-related diseases.


Assuntos
Glucanos/metabolismo , Osteogênese/fisiologia , Animais , Regeneração Óssea , Reabsorção Óssea/metabolismo , Osso e Ossos/metabolismo , Cartilagem/efeitos dos fármacos , Cartilagem/metabolismo , Diferenciação Celular/efeitos dos fármacos , Glucanos/farmacologia , Humanos , Imunomodulação , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteogênese/efeitos dos fármacos , Receptores Imunológicos/metabolismo
2.
J Cell Physiol ; 236(7): 5098-5107, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33305824

RESUMO

Immunoreceptors expressed on osteoclast precursor cells modify osteoclast differentiation and bone resorption activity. Dectin-1 is a lectin receptor of ß-glucan and is specifically expressed in osteoclast precursor cells. In this study, we evaluated the bioactivity of ß-glucan on receptor activator of nuclear factor-kappa B ligand (RANKL)-induced osteoclastogenesis and observed that glucan from baker's yeast inhibited this process in mouse bone marrow cells and dectin-1-overexpressing RAW264.7 (d-RAW) cells. In conjunction, RANKL-induced nuclear factor of activated T cell c1 expression was suppressed, subsequently downregulating TRAP and Oc-stamp. Additionally, nuclear factor-kappa B activation and the expression of c-fos and Blimp1 were reduced in d-RAW cells. Furthermore, glucan from baker's yeast induced the degradation of Syk protein, essential factor for osteoclastogenesis. These results suggest that glucan from baker's yeast suppresses RANKL-induced osteoclastogenesis and can be applied as a new treatment strategy for bone-related diseases.


Assuntos
Lectinas Tipo C/metabolismo , Osteoclastos/citologia , Osteogênese/fisiologia , Ligante RANK/metabolismo , Saccharomyces cerevisiae/metabolismo , beta-Glucanas/metabolismo , Animais , Reabsorção Óssea/patologia , Linhagem Celular , Proteínas de Membrana/metabolismo , Camundongos , Fator 1 de Ligação ao Domínio I Regulador Positivo/biossíntese , Proteínas Proto-Oncogênicas c-fos/biossíntese , Células RAW 264.7 , Fosfatase Ácida Resistente a Tartarato/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...