Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 455, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225262

RESUMO

mRNA export is an essential pathway for the regulation of gene expression. In humans, closely related RNA helicases, UAP56 and URH49, shape selective mRNA export pathways through the formation of distinct complexes, known as apo-TREX and apo-AREX complexes, and their subsequent remodeling into similar ATP-bound complexes. Therefore, defining the unidentified components of the apo-AREX complex and elucidating the molecular mechanisms underlying the formation of distinct apo-complexes is key to understanding their functional divergence. In this study, we identify additional apo-AREX components physically and functionally associated with URH49. Furthermore, by comparing the structures of UAP56 and URH49 and performing an integrated analysis of their chimeric mutants, we exhibit unique structural features that would contribute to the formation of their respective complexes. This study provides insights into the specific structural and functional diversification of these two helicases that diverged from the common ancestral gene Sub2.


Assuntos
RNA Helicases DEAD-box , RNA Helicases , Humanos , Transporte Ativo do Núcleo Celular , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , RNA Helicases/metabolismo , Transporte de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
2.
Biochim Biophys Acta Gene Regul Mech ; 1863(2): 194480, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31917363

RESUMO

The TREX complex integrates information from nuclear mRNA processing events to ensure the timely export of mRNA to the cytoplasm. In humans, UAP56 and its paralog URH49 form distinct complexes, the TREX complex and the AREX complex, respectively, which cooperatively regulate the expression of a specific set of mRNA species on a genome wide scale. The difference in the complex formation between UAP56 and URH49 are thought to play a critical role in the regulation of target mRNAs. To date, the underlying mechanism remains poorly understood. Here we characterize the formation of the TREX complex and the AREX complex. In the ATP depleted condition, UAP56 formed an Apo-TREX complex containing the THO subcomplex but not ALYREF and CIP29. URH49 formed an Apo-AREX complex containing CIP29 but not ALYREF and the THO subcomplex. However, with the addition of ATP, both the Apo-TREX complex and the Apo-AREX complex were remodeled to highly similar ATP-TREX complex containing the THO subcomplex, ALYREF and CIP29. The knockdown of URH49 caused a reduction in its target mRNAs and a cytokinesis failure. Similarly, cytokinesis abnormality was observed in CIP29 knockdown cells, suggesting that CIP29 belongs to the URH49 regulated mRNA export pathway. Lastly, we confirmed that the export of mRNA in URH49-dependent pathway is achieved by NXF1, which is also observed in UAP56-dependent pathway. Our studies propose an mRNA export model that the mRNA selectivity depends on the Apo-form TREX/AREX complex, which is remodeled to the highly similar ATP-form complex upon ATP loading, and integrated to NXF1.


Assuntos
RNA Helicases DEAD-box/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Citocinese/genética , RNA Helicases DEAD-box/genética , Regulação da Expressão Gênica , Humanos , Células MCF-7 , Modelos Biológicos , Proteínas Nucleares/genética , Transporte de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...