Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 7517, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37161006

RESUMO

The complete automation of materials manufacturing with high productivity is a key problem in some materials processing. In floating zone (FZ) crystal growth, which is a manufacturing process for semiconductor wafers such as silicon, an operator adaptively controls the input parameters in accordance with the state of the crystal growth process. Since the operation dynamics of FZ crystal growth are complicated, automation is often difficult, and usually the process is manually controlled. Here we demonstrate automated control of FZ crystal growth by reinforcement learning using the dynamics predicted by Gaussian mixture modeling (GMM) from small numbers of trajectories. Our proposed method of constructing the control model is completely data-driven. Using an emulator program for FZ crystal growth, we show that the control model constructed by our proposed model can more accurately follow the ideal growth trajectory than demonstration trajectories created by human operation. Furthermore, we reveal that policy optimization near the demonstration trajectories realizes accurate control following the ideal trajectory.

2.
Sci Rep ; 12(1): 18790, 2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36335202

RESUMO

4H-SiC has been commercialized as a material for power semiconductor devices. However, the long-term reliability of 4H-SiC devices is a barrier to their widespread application, and the most important reliability issue in 4H-SiC devices is bipolar degradation. This degradation is caused by the expansion of single Shockley stacking-faults (1SSFs) from basal plane dislocations in the 4H-SiC crystal. Here, we present a method for suppressing the 1SSF expansion by proton implantation on a 4H-SiC epitaxial wafer. PiN diodes fabricated on a proton-implanted wafer show current-voltage characteristics similar to those of PiN diodes without proton implantation. In contrast, the expansion of 1SSFs is effectively suppressed in PiN diodes with proton implantation. Therefore, proton implantation into 4H-SiC epitaxial wafers is an effective method for suppressing bipolar degradation in 4H-SiC power-semiconductor devices while maintaining device performance. This result contributes to the development of highly reliable 4H-SiC devices.

3.
J Appl Crystallogr ; 55(Pt 4): 1029-1032, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35974736

RESUMO

For the nondestructive characterization of SiC wafers for power device application, birefringence imaging is one of the promising methods. In the present study, it is demonstrated that birefringence image contrast variation in off-axis SiC wafers corresponds to the in-plane shear stress under conditions slightly deviating from crossed Nicols according to both theoretical consideration and experimental observation. The current results indicate that the characterization of defects in SiC wafers is possible to achieve by birefringence imaging.

4.
Sci Rep ; 12(1): 13542, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35970877

RESUMO

SiC bipolar degradation, which is caused by stacking fault expansion from basal plane dislocations in a SiC epitaxial layer or near the interface between the epitaxial layer and the substrate, is one of the critical problems inhibiting widespread usage of high-voltage SiC bipolar devices. In the present study, we investigated the stacking fault expansion behavior under UV illumination in a 4H-SiC epitaxial layer subjected to proton irradiation. X-ray topography observations revealed that proton irradiation suppressed stacking fault expansion. Excess carrier lifetime measurements showed that stacking fault expansion was suppressed in 4H-SiC epitaxial layers with proton irradiation at a fluence of 1 × 1011 cm-2 without evident reduction of the excess carrier lifetime. Furthermore, stacking fault expansion was also suppressed even after high-temperature annealing to recover the excess carrier lifetime. These results implied that passivation of dislocation cores by protons hinders recombination-enhanced dislocation glide motion under UV illumination.

5.
ACS Appl Mater Interfaces ; 12(8): 9341-9346, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-31971369

RESUMO

Li metal anodes are plagued by low coulombic efficiency due to their interfacial instability. Many approaches were proposed to cope with this problem; however, little attention has been given to the current collector of Li anodes. In this study, we investigate the crystal orientation dependence of the cycling stability of Li anodes on single-crystal Cu(111), (101), and (001) and polycrystalline Cu current collectors. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) show that (111) and (001) achieved high current efficiency and low interfacial resistance, while (101) and polycrystalline Cu exhibited low cyclabilities. X-ray photoelectron spectroscopy (XPS) and auger electron spectroscopy (AES) analysis revealed that the thickness of the solid electrolyte interphase (SEI) varies with the Cu crystal orientation, and the SEI is the thinnest on the single-crystal Cu(111). This tendency can be explained by the orientation dependence of the surface energy of Cu, which corresponds to the chemical activity of the surfaces. Our result advocates the importance of considering Cu orientation for interfacial engineering of Li metal anodes.

6.
Rev Sci Instrum ; 89(7): 073103, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30068122

RESUMO

We developed an angle-resolved photoemission spectroscopy system for the analysis of conduction-band electrons. By forming a negative electron affinity surface on a semiconductor surface, electrons in conduction bands are emitted into a vacuum and measured by using an analyzer. This method enables us to determine the energy and momentum of the conduction electrons. Furthermore, it can be used to determine unoccupied conduction band structures. The main challenges of this method are that the energies of the emitted electrons are extremely low and the trajectories of the electrons change due to various influences. We overcame these problems by placing the shielding mesh close to the sample and parallel to the sample surface. The entire chambers, including the shielding mesh, were grounded, and a negative bias voltage was applied only to the sample. This configuration realizes the acceleration of electrons while preserving the momentum component parallel to the sample surface. Another problem is the establishment of a method for converting a detected angle into the corresponding wavevector. We focused on the emission angle of electrons emitted from a sample and their minimum energy and then established an analytical method for converting detected angles into corresponding wavevectors on the basis of the minimum energy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...