Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 235(1): 333-343, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-33822388

RESUMO

To date, there has been no robust evidence for the exploitation of saprotrophic non-rhizoctonia fungi by green plants, although some fully mycoheterotrophic orchids are known to exploit them, and mycoheterotrophic evolution has probably occurred through intermediate mixotrophic stages. We investigated the physiological ecology of a fully mycoheterotrophic species Cremastra aphylla and its photosynthetic sister species Cremastra appendiculata, which putatively exploit saprotrophic fungi. Their mycorrhizal partners and ultimate nutritional sources were determined using molecular, stable isotopic, and radiocarbon analysis. Both Cremastra aphylla and Cremastra appendiculata were consistently associated with wood-decaying Psathyrellaceae. In addition, both species were highly enriched in carbon-13 (13 C) and, to a less degree, in nitrogen-15 (15 N). The δ13 C and δ15 N values of Cremastra appendiculata were intermediate between those of Cremastra aphylla and those of autotrophic plants. All Cremastra appendiculata samples and two Cremastra aphylla samples exhibited elevated Δ14 C values due to the acquisition of carbon fixed in wood during the past decades (14 C-enriched bomb carbon). Our multifaceted evidence indicated that both species obtained carbon from deadwood via saprotrophic fungi. Our findings strongly suggest that mixotrophic relationships associated with wood-decaying fungi represent a novel evolutionary pathway for full mycoheterotrophy in orchids.


Assuntos
Agaricales , Micorrizas , Orchidaceae , Agaricales/metabolismo , Carbono/metabolismo , Micorrizas/fisiologia , Orchidaceae/fisiologia , Fotossíntese , Simbiose
2.
Biol Lett ; 17(9): 20210353, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34547215

RESUMO

Terrestrial carbon cycling is largely mediated by soil food webs. Identifying the carbon source for soil animals has been desired to distinguish their roles in carbon cycling, but it is challenging for small invertebrates at low trophic levels because of methodological limitations. Here, we combined radiocarbon (14C) analysis with stable isotope analyses (13C and 15N) to understand feeding habits of soil microarthropods, especially focusing on springtail (Collembola). Most Collembola species exhibited lower Δ14C values than litter regardless of their δ13C and δ15N signatures, indicating their dependence on young carbon. In contrast with general patterns across all taxonomic groups, we found a significant negative correlation between δ15N and Δ14C values among the edaphic Collembola. This means that the species with higher δ15N values depend on C from more recent photosynthate, which suggests that soil-dwelling species generally feed on mycorrhizae to obtain root-derived C. Many predatory taxa exhibited higher Δ14C values than Collembola but lower than litter, indicating non-negligible effects of collembolan feeding habits on the soil food web. Our study demonstrated the usefulness of radiocarbon analysis, which can untangle the confounding factors that change collembolan δ15N values, clarify animal feeding habits and define the roles of organisms in soil food webs.


Assuntos
Artrópodes , Carbono , Animais , Isótopos de Carbono/análise , Cadeia Alimentar , Invertebrados , Solo
4.
J Insect Physiol ; 131: 104226, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33736982

RESUMO

Desiccation stress causes mesic-adapted arthropods to lose their body water content. However, mesic-adapted Paederus beetles can survive over prolonged periods under dry field conditions, suggesting that these beetles adopt an array of water conservation mechanisms. We investigated the water balance mechanisms of field-collected Paederus adults over a 14-month sampling period. We also assessed their nutritional adaptations by performing a stable isotope analysis to examine their diet. The water loss rate (WLR) of the beetles was significantly associated with the rice crop cycle and saturation deficit. The cuticular permeability (CP) of adult beetles was maintained at < 30 µg cm-2h-1 mmHg-1; however, CP increased significantly with the WLR. This result indicates that CP might play a minor role in reducing excessive water loss in beetles. The beetles' body water content and percentage total body water content increased when the WLR was high. Trehalose, glucose, and glycogen did not appear to play a central role in enhancing the water reserves in the insects. The body lipid content ranged from 0.22 ± 0.06 to 0.87 ± 0.07 mg and was negatively associated with the WLR. This association indicates that the increase in internal metabolic water was mediated by lipid catabolism. Stable isotope analysis results revealed that the Paederus beetles shifted their diet to carbohydrate-rich plants when the saturation deficit increased and the associated WLR reached its peak; otherwise, they consumed a high amount of staple carbohydrate-poor herbivore prey. The accumulation of energy reserves in the form of lipids through seasonal dietary shifts may exert major effects on the survival and population success of mesic-adapted Paederus beetles.


Assuntos
Aclimatação , Besouros/metabolismo , Dieta , Metabolismo dos Lipídeos , Água/metabolismo , Animais , Dessecação , Feminino , Masculino , Estações do Ano
5.
Mycorrhiza ; 31(2): 243-250, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33150532

RESUMO

The evolution of full mycoheterotrophy in orchids likely occurs through intermediate stages (i.e., partial mycoheterotrophy or mixotrophy), in which adult plants obtain nutrition through both autotrophy and mycoheterotrophy. However, because of its cryptic manifestation, partial mycoheterotrophy has only been confirmed in slightly more than 20 orchid species. Here, we hypothesized that Oreorchis indica is partially mycoheterotrophic, since (i) Oreorchis is closely related to leafless Corallorhiza, and (ii) it possesses clustered, multi-branched rhizomes that are often found in fully mycoheterotrophic orchids. Accordingly, we investigated the nutritional modes of O. indica in a Japanese subboreal forest by measuring the 13C and 15N abundances and by community profiling of its mycorrhizal fungi. We found that O. indica mycorrhizal samples (all 12 samples from four individuals) were predominantly colonized by a single OTU of the obligate ectomycorrhizal Tomentella (Thelephoraceae). In addition, the leaves of O. indica were highly enriched in both 13C and 15N compared with those of co-occurring autotrophic plants. It was estimated that O. indica obtained 44.4 ± 6.2% of its carbon from fungal sources. These results strongly suggest that in the Oreorchis-Corallorhiza clade, full mycoheterotrophy evolved after the establishment of partial mycoheterotrophy, rather than through direct shifts from autotrophy.


Assuntos
Basidiomycota , Micorrizas , Orchidaceae , Carbono , Simbiose
7.
Ecol Lett ; 21(7): 1065-1074, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29774660

RESUMO

Food-web complexity often hinders disentangling functionally relevant aspects of food-web structure and its relationships to biodiversity. Here, we present a theoretical framework to evaluate food-web complexity in terms of biodiversity. Food network unfolding is a theoretical method to transform a complex food web into a linear food chain based on ecosystem processes. Based on this method, we can define three biodiversity indices, horizontal diversity (DH ), vertical diversity (DV ) and range diversity (DR ), which are associated with the species diversity within each trophic level, diversity of trophic levels, and diversity in resource use, respectively. These indices are related to Shannon's diversity index (H'), where H' = DH  + DV  - DR . Application of the framework to three riverine macroinvertebrate communities revealed that D indices, calculated from biomass and stable isotope features, captured well the anthropogenic, seasonal, or other within-site changes in food-web structures that could not be captured with H' alone.


Assuntos
Biodiversidade , Cadeia Alimentar , Biomassa , Ecossistema
8.
Environ Entomol ; 45(1): 117-26, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26374757

RESUMO

Disturbance of forests by logging and subsequent forest succession causes marked changes in arthropod communities. Although vegetation cover provides important habitat for arthropods, studies of the changes in their community structure associated with forest succession have been conducted mostly at ground level. To evaluate how forests of different ages contribute to arthropod biodiversity in shrub habitat, spiders were collected from shrubs in 12 forests ranging in age from 1 to 107 yr after logging. We found marked changes in spider community structure about 10 yr after logging: the number of species and individuals declined rapidly after this time. These changes were likely caused by a decrease in shrub cover in association with forest succession. Changes in spider species composition associated with stand age were small in forests at least 11 yr old and were not clustered by forest age. After the exclusion of species of which we sampled only one or two individuals incidentally, just 0.9 ± 0.5 (mean ± SD) species were unique to these older forests. The other 41.2 ± 4.3 species found in these forests were common to both older and young forests, although some of these species in common were found mainly in forests at least 11 yr old. These results suggest that preservation of old-growth forests contributes to the abundance of these common species, although old-growth forests contribute little to species diversity.


Assuntos
Biodiversidade , Florestas , Aranhas/fisiologia , Animais , Japão , Fatores de Tempo
9.
Oecologia ; 171(4): 935-44, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22961370

RESUMO

Prey subsidies originating from detritus add nutrients and energy to arboreal communities. Measurement of this subsidy is required in the understanding of how food web dynamics respond to changes in surrounding environments. Shrub spiders are one of the key predators involved in food web coupling. We evaluate the effects of potential changes in prey availabilities during secondary succession on the contribution of subsidy from detrital food webs to shrub spiders and how different spider feeding guilds used the subsidy of prey from detrital food webs. We measured the relative importance of the subsidy for the spider feeding guilds, using the ratios of stable isotopes of C (δ(13)C), and N (δ(15)N) and C isotope discrimination (Δ(14)C). Diet age was calculated from Δ(14)C values, because old diet ages of spiders indicate that the spiders consume prey from detrital food sources. Dominant aerial prey (Diptera) had a distinctively old diet age compared with arboreal prey, which indicates that aerial prey were subsidized from detrital food webs. Sit-and-wait spiders tended to have an older diet age than active hunting spiders, which indicates that sit-and-wait spiders depended more on subsidies. Diet age varied only slightly for spiders in stands of different ages, indicating that rates at which spiders use grazing and detrital prey are probably determined more by foraging strategies and not by stand age. A dominance of sit-and-wait predators will lead to higher detrital subsidy inputs in shrub habitats. This study highlights the effect of shrub spider community structure (feeding guild composition) on the volume of the subsidy received from the detrital food web.


Assuntos
Biota , Dieta , Comportamento Alimentar/fisiologia , Cadeia Alimentar , Solo/análise , Aranhas/fisiologia , Fatores Etários , Análise de Variância , Animais , Isótopos de Carbono/análise , Radioisótopos de Carbono/análise , Insetos/anatomia & histologia , Insetos/química , Japão , Espectrometria de Massas , Isótopos de Nitrogênio/análise , Folhas de Planta/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...